{"title":"基于变换编码组合方案的图像压缩","authors":"Z. Ahmed, Loay E. George, Raad Ahmed Hadi","doi":"10.55708/js0109002","DOIUrl":null,"url":null,"abstract":": Some problems want to be solved in image compression to make the process workable and more efficient. Much work had been done in the field of lossy image compression based on wavelet and Discrete Cosine Transform (DCT). In this paper, an efficient image compression scheme is proposed, based on a common encoding transform scheme; It consists of the following steps: 1) bi-orthogonal (tab 9/7) wavelet transform to split the image data into sub-bands, 2) DCT to de-correlate the data, 3) the combined transform stage's output is subjected to scalar quantization before being mapped to positive, 4) and LZW encoding to produce the compressed data. The peak signal-to-noise (PSNR), compression ratio (CR), and compression gain (CG) measures were used to perform a comparative analysis of the performance of the whole system. Several image test samples were used to test the performance behavior. The simulation results show the efficiency of these combined transformations when LZW is used in the field of data compression. Compression outcomes are encouraging and display a significant reduction in image file size at good resolution.","PeriodicalId":156864,"journal":{"name":"Journal of Engineering Research and Sciences","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Images Compression using Combined Scheme of Transform Coding\",\"authors\":\"Z. Ahmed, Loay E. George, Raad Ahmed Hadi\",\"doi\":\"10.55708/js0109002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Some problems want to be solved in image compression to make the process workable and more efficient. Much work had been done in the field of lossy image compression based on wavelet and Discrete Cosine Transform (DCT). In this paper, an efficient image compression scheme is proposed, based on a common encoding transform scheme; It consists of the following steps: 1) bi-orthogonal (tab 9/7) wavelet transform to split the image data into sub-bands, 2) DCT to de-correlate the data, 3) the combined transform stage's output is subjected to scalar quantization before being mapped to positive, 4) and LZW encoding to produce the compressed data. The peak signal-to-noise (PSNR), compression ratio (CR), and compression gain (CG) measures were used to perform a comparative analysis of the performance of the whole system. Several image test samples were used to test the performance behavior. The simulation results show the efficiency of these combined transformations when LZW is used in the field of data compression. Compression outcomes are encouraging and display a significant reduction in image file size at good resolution.\",\"PeriodicalId\":156864,\"journal\":{\"name\":\"Journal of Engineering Research and Sciences\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Research and Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55708/js0109002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Research and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55708/js0109002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Images Compression using Combined Scheme of Transform Coding
: Some problems want to be solved in image compression to make the process workable and more efficient. Much work had been done in the field of lossy image compression based on wavelet and Discrete Cosine Transform (DCT). In this paper, an efficient image compression scheme is proposed, based on a common encoding transform scheme; It consists of the following steps: 1) bi-orthogonal (tab 9/7) wavelet transform to split the image data into sub-bands, 2) DCT to de-correlate the data, 3) the combined transform stage's output is subjected to scalar quantization before being mapped to positive, 4) and LZW encoding to produce the compressed data. The peak signal-to-noise (PSNR), compression ratio (CR), and compression gain (CG) measures were used to perform a comparative analysis of the performance of the whole system. Several image test samples were used to test the performance behavior. The simulation results show the efficiency of these combined transformations when LZW is used in the field of data compression. Compression outcomes are encouraging and display a significant reduction in image file size at good resolution.