部分读屏障,有效地支持实时面向对象编程

E. Miranda, Clément Béra
{"title":"部分读屏障,有效地支持实时面向对象编程","authors":"E. Miranda, Clément Béra","doi":"10.1145/2754169.2754186","DOIUrl":null,"url":null,"abstract":"Live programming, originally introduced by Smalltalk and Lisp, and now gaining popularity in contemporary systems such as Swift, requires on-the-fly support for object schema migration, such that the layout of objects may be changed while the program is at one and the same time being run and developed. In Smalltalk schema migration is supported by two primitives, one that answers a collection of all instances of a class, and one that exchanges the identities of pairs of objects, called the become primitive. Existing instances are collected, copies using the new schema created, state copied from old to new, and the two exchanged with become, effecting the schema migration. Historically the implementation of become has either required an extra level of indirection between an object's address and its body, slowing down slot access, or has required a sweep of all objects, a very slow operation on large heaps. Spur, a new object representation and memory manager for Smalltalk-like languages, has neither of these deficiencies. It uses direct pointers but still provides a fast become operation in large heaps, thanks to forwarding objects that when read conceptually answer another object and a partial read barrier that avoids the cost of explicitly checking for forwarding objects on the vast majority of object accesses.","PeriodicalId":136399,"journal":{"name":"Proceedings of the 2015 International Symposium on Memory Management","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A partial read barrier for efficient support of live object-oriented programming\",\"authors\":\"E. Miranda, Clément Béra\",\"doi\":\"10.1145/2754169.2754186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Live programming, originally introduced by Smalltalk and Lisp, and now gaining popularity in contemporary systems such as Swift, requires on-the-fly support for object schema migration, such that the layout of objects may be changed while the program is at one and the same time being run and developed. In Smalltalk schema migration is supported by two primitives, one that answers a collection of all instances of a class, and one that exchanges the identities of pairs of objects, called the become primitive. Existing instances are collected, copies using the new schema created, state copied from old to new, and the two exchanged with become, effecting the schema migration. Historically the implementation of become has either required an extra level of indirection between an object's address and its body, slowing down slot access, or has required a sweep of all objects, a very slow operation on large heaps. Spur, a new object representation and memory manager for Smalltalk-like languages, has neither of these deficiencies. It uses direct pointers but still provides a fast become operation in large heaps, thanks to forwarding objects that when read conceptually answer another object and a partial read barrier that avoids the cost of explicitly checking for forwarding objects on the vast majority of object accesses.\",\"PeriodicalId\":136399,\"journal\":{\"name\":\"Proceedings of the 2015 International Symposium on Memory Management\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 International Symposium on Memory Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2754169.2754186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 International Symposium on Memory Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2754169.2754186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

实时编程最初是由Smalltalk和Lisp引入的,现在在Swift等现代系统中越来越流行,它需要对对象模式迁移的动态支持,这样,当程序同时运行和开发时,对象的布局可能会改变。在Smalltalk模式中,迁移由两个原语支持,一个原语响应类的所有实例集合,另一个原语交换成对对象的标识,称为成为原语。收集现有实例,使用新模式创建副本,将状态从旧复制到新,并将两者交换,从而影响模式迁移。从历史上看,实现成为要么需要在对象的地址和它的主体之间增加一个额外的间接层,从而减慢了槽访问速度,要么需要清除所有对象,这在大堆上是一个非常慢的操作。Spur是一种针对类似smalltalk的语言的新的对象表示和内存管理器,它没有这些缺陷。它使用直接指针,但在大堆中仍然提供了快速的变成操作,这要归功于转发对象,当读取时在概念上回答另一个对象,以及部分读屏障,避免了在绝大多数对象访问时显式检查转发对象的成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A partial read barrier for efficient support of live object-oriented programming
Live programming, originally introduced by Smalltalk and Lisp, and now gaining popularity in contemporary systems such as Swift, requires on-the-fly support for object schema migration, such that the layout of objects may be changed while the program is at one and the same time being run and developed. In Smalltalk schema migration is supported by two primitives, one that answers a collection of all instances of a class, and one that exchanges the identities of pairs of objects, called the become primitive. Existing instances are collected, copies using the new schema created, state copied from old to new, and the two exchanged with become, effecting the schema migration. Historically the implementation of become has either required an extra level of indirection between an object's address and its body, slowing down slot access, or has required a sweep of all objects, a very slow operation on large heaps. Spur, a new object representation and memory manager for Smalltalk-like languages, has neither of these deficiencies. It uses direct pointers but still provides a fast become operation in large heaps, thanks to forwarding objects that when read conceptually answer another object and a partial read barrier that avoids the cost of explicitly checking for forwarding objects on the vast majority of object accesses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信