特征提取器和分类器在英语和古慕克语文字识别中的性能分析

DAR '12 Pub Date : 2012-12-16 DOI:10.1145/2432553.2432559
Rajneesh Rani, R. Dhir, Gurpreet Singh Lehal
{"title":"特征提取器和分类器在英语和古慕克语文字识别中的性能分析","authors":"Rajneesh Rani, R. Dhir, Gurpreet Singh Lehal","doi":"10.1145/2432553.2432559","DOIUrl":null,"url":null,"abstract":"Script Recognition is a challenging field for the recognition of documents in a multilingual country like India where different scripts are in use. For optical character recognition of such multilingual documents, it is necessary to separate blocks, lines, words and characters of different scripts before feeding them to the OCRs of individual scripts. Many approaches have been proposed by the researchers towards script recognition at different levels (Block, Line, Word and Character Level). Normally Indian documents, in any its state language contain English words mixed with other words in its own state language. In this paper, we extract three different types of features: Structural, Gabor and Discrete Cosine Transforms(DCT) Features from Isolated English and Gurmukhi words and compare their script recognition performance using three different classifiers: Support Vector Machine (SVM), k-Nearest Neighbor and Parzen Probabilistic Neural Network (PNN).","PeriodicalId":410986,"journal":{"name":"DAR '12","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Performance analysis of feature extractors and classifiers for script recognition of English and Gurmukhi words\",\"authors\":\"Rajneesh Rani, R. Dhir, Gurpreet Singh Lehal\",\"doi\":\"10.1145/2432553.2432559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Script Recognition is a challenging field for the recognition of documents in a multilingual country like India where different scripts are in use. For optical character recognition of such multilingual documents, it is necessary to separate blocks, lines, words and characters of different scripts before feeding them to the OCRs of individual scripts. Many approaches have been proposed by the researchers towards script recognition at different levels (Block, Line, Word and Character Level). Normally Indian documents, in any its state language contain English words mixed with other words in its own state language. In this paper, we extract three different types of features: Structural, Gabor and Discrete Cosine Transforms(DCT) Features from Isolated English and Gurmukhi words and compare their script recognition performance using three different classifiers: Support Vector Machine (SVM), k-Nearest Neighbor and Parzen Probabilistic Neural Network (PNN).\",\"PeriodicalId\":410986,\"journal\":{\"name\":\"DAR '12\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DAR '12\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2432553.2432559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DAR '12","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2432553.2432559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

对于像印度这样使用不同文字的多语言国家的文档识别来说,脚本识别是一个具有挑战性的领域。对于这类多语言文档的光学字符识别,需要对不同文字的块、行、词、字符进行分离,然后再输入到单个文字的ocr中。研究者们提出了许多不同层次(块、行、字、字)的文字识别方法。通常情况下,印度的文件,在其任何国家语言中,都包含英语单词和其他国家语言单词的混合。在本文中,我们从孤立的英语和Gurmukhi单词中提取了三种不同类型的特征:结构,Gabor和离散余弦变换(DCT)特征,并使用三种不同的分类器:支持向量机(SVM), k-最近邻和Parzen概率神经网络(PNN)来比较它们的脚本识别性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance analysis of feature extractors and classifiers for script recognition of English and Gurmukhi words
Script Recognition is a challenging field for the recognition of documents in a multilingual country like India where different scripts are in use. For optical character recognition of such multilingual documents, it is necessary to separate blocks, lines, words and characters of different scripts before feeding them to the OCRs of individual scripts. Many approaches have been proposed by the researchers towards script recognition at different levels (Block, Line, Word and Character Level). Normally Indian documents, in any its state language contain English words mixed with other words in its own state language. In this paper, we extract three different types of features: Structural, Gabor and Discrete Cosine Transforms(DCT) Features from Isolated English and Gurmukhi words and compare their script recognition performance using three different classifiers: Support Vector Machine (SVM), k-Nearest Neighbor and Parzen Probabilistic Neural Network (PNN).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信