{"title":"利用MINI-REFPROP和MATLAB simulink对某燃气轮机电厂的运行经济性和敏感性进行了分析","authors":"F. E. Malik, I. D. Elhadi","doi":"10.26634/jps.10.4.19203","DOIUrl":null,"url":null,"abstract":"In this paper, exergy, exergoeconomic, and exergoenvironmental analysis of a gas turbine cycle and its optimization have been carried out by MINI-Reference Fluid Properties (MINI-REFPROP) and Matrix Laboratory (MATLAB) SIMULINK. The parametric study was carried out based on the Specific Exergy Costing approach. The mathematical models were developed and presented regarding mass, energy, and economy. The Excel and MATLAB LIBRARY TOOLS BOX are used to perform thermodynamic properties and research analyses. The analyses lead to valuable economic status benchmarks. The exergoeconomic factor, relative cost, total cost of energy loss, and energy destruction for the combustion chamber and work output were determined. The parametric study was conducted, considering the effects of the gas turbine inlet temperature, air compressor inlet temperature, and compressor pressure ratio. For the considered case study status, the combustion chamber in the plant revealed the highest amount of energy destruction (85%), leading to the recommendation that more attention be paid to boilers in terms of design, selection, operation, and maintenance, while the combustion chamber has a high improvement potential (91%).","PeriodicalId":421955,"journal":{"name":"i-manager's Journal on Power Systems Engineering","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exergoeconomic and sensitivity analyses of a gas turbine power plant using MINI-REFPROP and MATLAB simulink\",\"authors\":\"F. E. Malik, I. D. Elhadi\",\"doi\":\"10.26634/jps.10.4.19203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, exergy, exergoeconomic, and exergoenvironmental analysis of a gas turbine cycle and its optimization have been carried out by MINI-Reference Fluid Properties (MINI-REFPROP) and Matrix Laboratory (MATLAB) SIMULINK. The parametric study was carried out based on the Specific Exergy Costing approach. The mathematical models were developed and presented regarding mass, energy, and economy. The Excel and MATLAB LIBRARY TOOLS BOX are used to perform thermodynamic properties and research analyses. The analyses lead to valuable economic status benchmarks. The exergoeconomic factor, relative cost, total cost of energy loss, and energy destruction for the combustion chamber and work output were determined. The parametric study was conducted, considering the effects of the gas turbine inlet temperature, air compressor inlet temperature, and compressor pressure ratio. For the considered case study status, the combustion chamber in the plant revealed the highest amount of energy destruction (85%), leading to the recommendation that more attention be paid to boilers in terms of design, selection, operation, and maintenance, while the combustion chamber has a high improvement potential (91%).\",\"PeriodicalId\":421955,\"journal\":{\"name\":\"i-manager's Journal on Power Systems Engineering\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"i-manager's Journal on Power Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26634/jps.10.4.19203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"i-manager's Journal on Power Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26634/jps.10.4.19203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exergoeconomic and sensitivity analyses of a gas turbine power plant using MINI-REFPROP and MATLAB simulink
In this paper, exergy, exergoeconomic, and exergoenvironmental analysis of a gas turbine cycle and its optimization have been carried out by MINI-Reference Fluid Properties (MINI-REFPROP) and Matrix Laboratory (MATLAB) SIMULINK. The parametric study was carried out based on the Specific Exergy Costing approach. The mathematical models were developed and presented regarding mass, energy, and economy. The Excel and MATLAB LIBRARY TOOLS BOX are used to perform thermodynamic properties and research analyses. The analyses lead to valuable economic status benchmarks. The exergoeconomic factor, relative cost, total cost of energy loss, and energy destruction for the combustion chamber and work output were determined. The parametric study was conducted, considering the effects of the gas turbine inlet temperature, air compressor inlet temperature, and compressor pressure ratio. For the considered case study status, the combustion chamber in the plant revealed the highest amount of energy destruction (85%), leading to the recommendation that more attention be paid to boilers in terms of design, selection, operation, and maintenance, while the combustion chamber has a high improvement potential (91%).