{"title":"基于知识图嵌入和蒸馏器的命名实体识别","authors":"Shreya R. Mehta, Mansi A. Radke, Sagar Sunkle","doi":"10.1145/3508230.3508252","DOIUrl":null,"url":null,"abstract":"Named Entity Recognition (NER) is a Natural Language Processing (NLP) task of identifying entities from a natural language text and classifies them into categories like Person, Location, Organization etc. Pre-trained neural language models (PNLM) based on transformers are state-of-the-art in many NLP task including NER. Analysis of output of DistilBERT, a popular PNLM, reveals that mis-classifications occur when a non-entity word is at a place contextually suitable for an entity. The paper is based on the hypothesis that the performance of a PNLM can be improved by combining it with Knowledge Graph Embeddings (KGE). We show that fine-tuning of DistilBERT along with NumberBatch KGE gives performance improvement over various Open-domain as well as Biomedical-domain datasets.","PeriodicalId":252146,"journal":{"name":"Proceedings of the 2021 5th International Conference on Natural Language Processing and Information Retrieval","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Named Entity Recognition using Knowledge Graph Embeddings and DistilBERT\",\"authors\":\"Shreya R. Mehta, Mansi A. Radke, Sagar Sunkle\",\"doi\":\"10.1145/3508230.3508252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Named Entity Recognition (NER) is a Natural Language Processing (NLP) task of identifying entities from a natural language text and classifies them into categories like Person, Location, Organization etc. Pre-trained neural language models (PNLM) based on transformers are state-of-the-art in many NLP task including NER. Analysis of output of DistilBERT, a popular PNLM, reveals that mis-classifications occur when a non-entity word is at a place contextually suitable for an entity. The paper is based on the hypothesis that the performance of a PNLM can be improved by combining it with Knowledge Graph Embeddings (KGE). We show that fine-tuning of DistilBERT along with NumberBatch KGE gives performance improvement over various Open-domain as well as Biomedical-domain datasets.\",\"PeriodicalId\":252146,\"journal\":{\"name\":\"Proceedings of the 2021 5th International Conference on Natural Language Processing and Information Retrieval\",\"volume\":\"2012 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 5th International Conference on Natural Language Processing and Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3508230.3508252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 5th International Conference on Natural Language Processing and Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508230.3508252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Named Entity Recognition using Knowledge Graph Embeddings and DistilBERT
Named Entity Recognition (NER) is a Natural Language Processing (NLP) task of identifying entities from a natural language text and classifies them into categories like Person, Location, Organization etc. Pre-trained neural language models (PNLM) based on transformers are state-of-the-art in many NLP task including NER. Analysis of output of DistilBERT, a popular PNLM, reveals that mis-classifications occur when a non-entity word is at a place contextually suitable for an entity. The paper is based on the hypothesis that the performance of a PNLM can be improved by combining it with Knowledge Graph Embeddings (KGE). We show that fine-tuning of DistilBERT along with NumberBatch KGE gives performance improvement over various Open-domain as well as Biomedical-domain datasets.