基于知识图嵌入和蒸馏器的命名实体识别

Shreya R. Mehta, Mansi A. Radke, Sagar Sunkle
{"title":"基于知识图嵌入和蒸馏器的命名实体识别","authors":"Shreya R. Mehta, Mansi A. Radke, Sagar Sunkle","doi":"10.1145/3508230.3508252","DOIUrl":null,"url":null,"abstract":"Named Entity Recognition (NER) is a Natural Language Processing (NLP) task of identifying entities from a natural language text and classifies them into categories like Person, Location, Organization etc. Pre-trained neural language models (PNLM) based on transformers are state-of-the-art in many NLP task including NER. Analysis of output of DistilBERT, a popular PNLM, reveals that mis-classifications occur when a non-entity word is at a place contextually suitable for an entity. The paper is based on the hypothesis that the performance of a PNLM can be improved by combining it with Knowledge Graph Embeddings (KGE). We show that fine-tuning of DistilBERT along with NumberBatch KGE gives performance improvement over various Open-domain as well as Biomedical-domain datasets.","PeriodicalId":252146,"journal":{"name":"Proceedings of the 2021 5th International Conference on Natural Language Processing and Information Retrieval","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Named Entity Recognition using Knowledge Graph Embeddings and DistilBERT\",\"authors\":\"Shreya R. Mehta, Mansi A. Radke, Sagar Sunkle\",\"doi\":\"10.1145/3508230.3508252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Named Entity Recognition (NER) is a Natural Language Processing (NLP) task of identifying entities from a natural language text and classifies them into categories like Person, Location, Organization etc. Pre-trained neural language models (PNLM) based on transformers are state-of-the-art in many NLP task including NER. Analysis of output of DistilBERT, a popular PNLM, reveals that mis-classifications occur when a non-entity word is at a place contextually suitable for an entity. The paper is based on the hypothesis that the performance of a PNLM can be improved by combining it with Knowledge Graph Embeddings (KGE). We show that fine-tuning of DistilBERT along with NumberBatch KGE gives performance improvement over various Open-domain as well as Biomedical-domain datasets.\",\"PeriodicalId\":252146,\"journal\":{\"name\":\"Proceedings of the 2021 5th International Conference on Natural Language Processing and Information Retrieval\",\"volume\":\"2012 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 5th International Conference on Natural Language Processing and Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3508230.3508252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 5th International Conference on Natural Language Processing and Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508230.3508252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

命名实体识别(NER)是一种自然语言处理(NLP)任务,它从自然语言文本中识别实体,并将它们分类为人物、位置、组织等类别。基于变压器的预训练神经语言模型(PNLM)在包括NER在内的许多NLP任务中都是最先进的。对蒸馏器(一个流行的PNLM)输出的分析表明,当一个非实体词在上下文适合于一个实体的地方时,就会发生错误分类。本文基于将PNLM与知识图嵌入(KGE)相结合可以提高其性能的假设。我们表明,在各种开放域和生物医学域数据集上,对蒸馏器和NumberBatch KGE进行微调可以提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Named Entity Recognition using Knowledge Graph Embeddings and DistilBERT
Named Entity Recognition (NER) is a Natural Language Processing (NLP) task of identifying entities from a natural language text and classifies them into categories like Person, Location, Organization etc. Pre-trained neural language models (PNLM) based on transformers are state-of-the-art in many NLP task including NER. Analysis of output of DistilBERT, a popular PNLM, reveals that mis-classifications occur when a non-entity word is at a place contextually suitable for an entity. The paper is based on the hypothesis that the performance of a PNLM can be improved by combining it with Knowledge Graph Embeddings (KGE). We show that fine-tuning of DistilBERT along with NumberBatch KGE gives performance improvement over various Open-domain as well as Biomedical-domain datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信