M. Filer, J. Gaudette, Monia Ghobadi, Ratul Mahajan, Tom Issenhuth, Buddy Klinkers, J. Cox
{"title":"微软云中的弹性光网络[特邀]","authors":"M. Filer, J. Gaudette, Monia Ghobadi, Ratul Mahajan, Tom Issenhuth, Buddy Klinkers, J. Cox","doi":"10.1364/JOCN.8.000A45","DOIUrl":null,"url":null,"abstract":"To keep pace with the tremendous bandwidth growth in cloud networking, web-scale providers, such as Microsoft, have been quick to adopt elastic features of modern optical networks. In particular, colorless flexible-grid reconfigurable optical add-drop multiplexers, bandwidth-variable transceivers, and the ability to choose a variety of optical source types are integral for cloud network operators to improve network efficiency while supporting a variety of service types. We take an in-depth look at Microsoft's deployed network infrastructure and discuss the impact of elasticity on network capacity and flexibility. As a proof-of-concept, a new elastic open line system (OLS), in which the line system components and the signal sources are disaggregated, was assembled in a laboratory environment, and 4000 km of propagation over primarily nonzero dispersion-shifted fiber using multiple source types is demonstrated. Finally, the long-term goal of unifying the control plane of the OLS, DWDM signal sources, routers, and Ethernet switches under a single software-defined network controller is briefly addressed.","PeriodicalId":371742,"journal":{"name":"IEEE/OSA Journal of Optical Communications and Networking","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Elastic optical networking in the microsoft cloud [Invited]\",\"authors\":\"M. Filer, J. Gaudette, Monia Ghobadi, Ratul Mahajan, Tom Issenhuth, Buddy Klinkers, J. Cox\",\"doi\":\"10.1364/JOCN.8.000A45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To keep pace with the tremendous bandwidth growth in cloud networking, web-scale providers, such as Microsoft, have been quick to adopt elastic features of modern optical networks. In particular, colorless flexible-grid reconfigurable optical add-drop multiplexers, bandwidth-variable transceivers, and the ability to choose a variety of optical source types are integral for cloud network operators to improve network efficiency while supporting a variety of service types. We take an in-depth look at Microsoft's deployed network infrastructure and discuss the impact of elasticity on network capacity and flexibility. As a proof-of-concept, a new elastic open line system (OLS), in which the line system components and the signal sources are disaggregated, was assembled in a laboratory environment, and 4000 km of propagation over primarily nonzero dispersion-shifted fiber using multiple source types is demonstrated. Finally, the long-term goal of unifying the control plane of the OLS, DWDM signal sources, routers, and Ethernet switches under a single software-defined network controller is briefly addressed.\",\"PeriodicalId\":371742,\"journal\":{\"name\":\"IEEE/OSA Journal of Optical Communications and Networking\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/OSA Journal of Optical Communications and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/JOCN.8.000A45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/OSA Journal of Optical Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/JOCN.8.000A45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Elastic optical networking in the microsoft cloud [Invited]
To keep pace with the tremendous bandwidth growth in cloud networking, web-scale providers, such as Microsoft, have been quick to adopt elastic features of modern optical networks. In particular, colorless flexible-grid reconfigurable optical add-drop multiplexers, bandwidth-variable transceivers, and the ability to choose a variety of optical source types are integral for cloud network operators to improve network efficiency while supporting a variety of service types. We take an in-depth look at Microsoft's deployed network infrastructure and discuss the impact of elasticity on network capacity and flexibility. As a proof-of-concept, a new elastic open line system (OLS), in which the line system components and the signal sources are disaggregated, was assembled in a laboratory environment, and 4000 km of propagation over primarily nonzero dispersion-shifted fiber using multiple source types is demonstrated. Finally, the long-term goal of unifying the control plane of the OLS, DWDM signal sources, routers, and Ethernet switches under a single software-defined network controller is briefly addressed.