挖掘神经心理学数据之间的关系以表征阿尔茨海默病

Germán A. Pabón, Diana L. Giraldo, E. Romero
{"title":"挖掘神经心理学数据之间的关系以表征阿尔茨海默病","authors":"Germán A. Pabón, Diana L. Giraldo, E. Romero","doi":"10.1117/12.2606298","DOIUrl":null,"url":null,"abstract":"The quantitative characterization of Alzheimer’s Disease (AD) in early stages allows timely detection and prediction of disease progression. These are important to disease intervention and monitoring before clinical diagnosis of dementia. We used cognitive, functional and behavioral data from 612 Alzheimer’s Disease Neuroimaging Initiative (ADNI) individuals. First, we standardized, based on normative data, and dichotomized the selected variables. Grouping abnormal variables, we learned possible disease features from a sample of 225 cognitively impaired patients. Then, we quantify the manifestation for each disease feature and evaluated this quantitative characterization in the automated prediction of future progression from Mild Cognitive Impairment (MCI) to AD dementia. Five groups of abnormal neuropsychological measures were established describing five possible disease features. The resulting quantitative characterization for AD at prodromal stages predicts disease progression within the next 36 months with an accuracy of 0.76.","PeriodicalId":147201,"journal":{"name":"Symposium on Medical Information Processing and Analysis","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mining relations between neuropsychological data to characterize Alzheimer’s disease\",\"authors\":\"Germán A. Pabón, Diana L. Giraldo, E. Romero\",\"doi\":\"10.1117/12.2606298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quantitative characterization of Alzheimer’s Disease (AD) in early stages allows timely detection and prediction of disease progression. These are important to disease intervention and monitoring before clinical diagnosis of dementia. We used cognitive, functional and behavioral data from 612 Alzheimer’s Disease Neuroimaging Initiative (ADNI) individuals. First, we standardized, based on normative data, and dichotomized the selected variables. Grouping abnormal variables, we learned possible disease features from a sample of 225 cognitively impaired patients. Then, we quantify the manifestation for each disease feature and evaluated this quantitative characterization in the automated prediction of future progression from Mild Cognitive Impairment (MCI) to AD dementia. Five groups of abnormal neuropsychological measures were established describing five possible disease features. The resulting quantitative characterization for AD at prodromal stages predicts disease progression within the next 36 months with an accuracy of 0.76.\",\"PeriodicalId\":147201,\"journal\":{\"name\":\"Symposium on Medical Information Processing and Analysis\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium on Medical Information Processing and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2606298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Medical Information Processing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2606298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病(AD)的早期定量表征可以及时发现和预测疾病进展。这些对痴呆临床诊断前的疾病干预和监测很重要。我们使用了来自612名阿尔茨海默病神经影像学倡议(ADNI)个体的认知、功能和行为数据。首先,我们基于规范数据进行标准化,并对所选变量进行二分类。将异常变量分组,我们从225名认知受损患者的样本中了解了可能的疾病特征。然后,我们量化了每种疾病特征的表现,并评估了这种定量表征在从轻度认知障碍(MCI)到AD痴呆的未来进展的自动预测中的作用。建立了五组异常神经心理指标,描述了五种可能的疾病特征。由此产生的AD前驱期定量特征预测未来36个月内的疾病进展,准确率为0.76。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mining relations between neuropsychological data to characterize Alzheimer’s disease
The quantitative characterization of Alzheimer’s Disease (AD) in early stages allows timely detection and prediction of disease progression. These are important to disease intervention and monitoring before clinical diagnosis of dementia. We used cognitive, functional and behavioral data from 612 Alzheimer’s Disease Neuroimaging Initiative (ADNI) individuals. First, we standardized, based on normative data, and dichotomized the selected variables. Grouping abnormal variables, we learned possible disease features from a sample of 225 cognitively impaired patients. Then, we quantify the manifestation for each disease feature and evaluated this quantitative characterization in the automated prediction of future progression from Mild Cognitive Impairment (MCI) to AD dementia. Five groups of abnormal neuropsychological measures were established describing five possible disease features. The resulting quantitative characterization for AD at prodromal stages predicts disease progression within the next 36 months with an accuracy of 0.76.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信