多分类器融合对ONC水听器数据中的声事件进行分类

Gorkem Cipli, F. Sattar, P. Driessen
{"title":"多分类器融合对ONC水听器数据中的声事件进行分类","authors":"Gorkem Cipli, F. Sattar, P. Driessen","doi":"10.1109/PACRIM.2015.7334882","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new framework of multiple classifiers fusion to classify acoustic events in ONC (Ocean Network Canada) hydrophone data. The outputs of three different classifiers are fused based on aggregation of a generated decision matrix. An ensemble class label is thereby obtained for the classification of acoustic events into multiple classes of whale calls, boat sounds and noise. The classification performances are evaluated using real recorded hydrophone data showing an overall improvement of the classification accuracy by 10% for the proposed method over the average accuracy of the individual classifiers.","PeriodicalId":350052,"journal":{"name":"2015 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple classifiers fusion to classify acoustic events in ONC hydrophone data\",\"authors\":\"Gorkem Cipli, F. Sattar, P. Driessen\",\"doi\":\"10.1109/PACRIM.2015.7334882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a new framework of multiple classifiers fusion to classify acoustic events in ONC (Ocean Network Canada) hydrophone data. The outputs of three different classifiers are fused based on aggregation of a generated decision matrix. An ensemble class label is thereby obtained for the classification of acoustic events into multiple classes of whale calls, boat sounds and noise. The classification performances are evaluated using real recorded hydrophone data showing an overall improvement of the classification accuracy by 10% for the proposed method over the average accuracy of the individual classifiers.\",\"PeriodicalId\":350052,\"journal\":{\"name\":\"2015 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACRIM.2015.7334882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACRIM.2015.7334882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的多分类器融合框架,用于对ONC (Ocean Network Canada)水听器数据中的声事件进行分类。基于生成的决策矩阵的聚合,融合了三个不同分类器的输出。因此,获得了一个合奏类标签,用于将声学事件分类为鲸鱼叫声、船声和噪声的多个类别。使用实际记录的水听器数据对分类性能进行了评估,结果显示,与单个分类器的平均精度相比,所提出方法的分类精度总体提高了10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple classifiers fusion to classify acoustic events in ONC hydrophone data
In this paper, we present a new framework of multiple classifiers fusion to classify acoustic events in ONC (Ocean Network Canada) hydrophone data. The outputs of three different classifiers are fused based on aggregation of a generated decision matrix. An ensemble class label is thereby obtained for the classification of acoustic events into multiple classes of whale calls, boat sounds and noise. The classification performances are evaluated using real recorded hydrophone data showing an overall improvement of the classification accuracy by 10% for the proposed method over the average accuracy of the individual classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信