穿刺中医与多维中医——比较中医复杂性

Fabian Schuh, J. Huber
{"title":"穿刺中医与多维中医——比较中医复杂性","authors":"Fabian Schuh, J. Huber","doi":"10.1109/GLOCOMW.2014.7063631","DOIUrl":null,"url":null,"abstract":"Trellis-coded modulation (TCM) is a power- and bandwidth efficient digital transmission scheme which offers very low structural delay of the data stream. Classical TCM uses a signal constellation of twice the cardinality compared to an uncoded transmission with one bit of redundancy per PAM symbol, i.e., application of codes with rates n-1/2 when 2n denotes the cardinality of the signal constellation. In order to offer a higher granularity of rates, multi-dimensional (i.e., D-dimensional) constellations had been proposed by means of combining subsequent one- or two-dimensional modulation steps, resulting in TCM schemes with 1/D bit redundancy per (real) dimension. A recently published alternative approach allows rate adjustment for TCM by means of puncturing of the convolutional code (CC) on which a TCM scheme is based on. In this paper it is shown that punctured TCM not only offers a higher flexibility in rate adjustment but significantly less decoding complexity when compared to MD-TCM. Throughout the paper, structural delay is considered, which is a lower bound on the actual delay and describes the inevitable delay solely depending on the structural properties of the coding scheme but not on processing time, propagation delay, etc.","PeriodicalId":354340,"journal":{"name":"2014 IEEE Globecom Workshops (GC Wkshps)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Punctured vs. multidimensional TCM — A comparison w.r.t. complexity\",\"authors\":\"Fabian Schuh, J. Huber\",\"doi\":\"10.1109/GLOCOMW.2014.7063631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Trellis-coded modulation (TCM) is a power- and bandwidth efficient digital transmission scheme which offers very low structural delay of the data stream. Classical TCM uses a signal constellation of twice the cardinality compared to an uncoded transmission with one bit of redundancy per PAM symbol, i.e., application of codes with rates n-1/2 when 2n denotes the cardinality of the signal constellation. In order to offer a higher granularity of rates, multi-dimensional (i.e., D-dimensional) constellations had been proposed by means of combining subsequent one- or two-dimensional modulation steps, resulting in TCM schemes with 1/D bit redundancy per (real) dimension. A recently published alternative approach allows rate adjustment for TCM by means of puncturing of the convolutional code (CC) on which a TCM scheme is based on. In this paper it is shown that punctured TCM not only offers a higher flexibility in rate adjustment but significantly less decoding complexity when compared to MD-TCM. Throughout the paper, structural delay is considered, which is a lower bound on the actual delay and describes the inevitable delay solely depending on the structural properties of the coding scheme but not on processing time, propagation delay, etc.\",\"PeriodicalId\":354340,\"journal\":{\"name\":\"2014 IEEE Globecom Workshops (GC Wkshps)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Globecom Workshops (GC Wkshps)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOMW.2014.7063631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOMW.2014.7063631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

栅格编码调制(TCM)是一种功率和带宽效率高的数字传输方案,它提供了非常低的数据流结构延迟。经典TCM使用的信号星座的基数是无编码传输的两倍,每个PAM符号有1位冗余,即当2n表示信号星座的基数时,使用速率为n-1/2的码。为了提供更高粒度的速率,通过结合后续的一维或二维调制步骤,提出了多维(即D维)星座,从而产生每个(实)维具有1/D位冗余的TCM方案。最近发表的一种替代方法允许通过刺穿TCM方案所基于的卷积码(CC)来调整TCM的速率。本文的研究表明,与MD-TCM相比,穿刺TCM不仅具有更高的速率调整灵活性,而且解码复杂度显著降低。整篇文章都考虑了结构延迟,它是实际延迟的下界,描述了仅依赖于编码方案的结构特性而不依赖于处理时间、传播延迟等的必然延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Punctured vs. multidimensional TCM — A comparison w.r.t. complexity
Trellis-coded modulation (TCM) is a power- and bandwidth efficient digital transmission scheme which offers very low structural delay of the data stream. Classical TCM uses a signal constellation of twice the cardinality compared to an uncoded transmission with one bit of redundancy per PAM symbol, i.e., application of codes with rates n-1/2 when 2n denotes the cardinality of the signal constellation. In order to offer a higher granularity of rates, multi-dimensional (i.e., D-dimensional) constellations had been proposed by means of combining subsequent one- or two-dimensional modulation steps, resulting in TCM schemes with 1/D bit redundancy per (real) dimension. A recently published alternative approach allows rate adjustment for TCM by means of puncturing of the convolutional code (CC) on which a TCM scheme is based on. In this paper it is shown that punctured TCM not only offers a higher flexibility in rate adjustment but significantly less decoding complexity when compared to MD-TCM. Throughout the paper, structural delay is considered, which is a lower bound on the actual delay and describes the inevitable delay solely depending on the structural properties of the coding scheme but not on processing time, propagation delay, etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信