带有处理反馈的内核增量元学习

Zhuoran Chen, X. Liao
{"title":"带有处理反馈的内核增量元学习","authors":"Zhuoran Chen, X. Liao","doi":"10.1109/ICICIP.2015.7388230","DOIUrl":null,"url":null,"abstract":"In this letter, a recurrent kernel online learning algorithm with a processed feedback is proposed. The delayed output is processed by a well designed nonlinear piecewise function, which strengthens or weakens the feedback in response to different situation. Furthermore, the algorithm includes a data-dependent adaptive learning rate which evolves from kernel incremental meta-learning algorithm. Experimental results show that the novel algorithm outperforms both the kernel adaptive filter with multiple feedback and the kernel algorithm with single feedback in terms of convergence speed and estimation accuracy.","PeriodicalId":265426,"journal":{"name":"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kernel incremental meta-learning with processed feedback\",\"authors\":\"Zhuoran Chen, X. Liao\",\"doi\":\"10.1109/ICICIP.2015.7388230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this letter, a recurrent kernel online learning algorithm with a processed feedback is proposed. The delayed output is processed by a well designed nonlinear piecewise function, which strengthens or weakens the feedback in response to different situation. Furthermore, the algorithm includes a data-dependent adaptive learning rate which evolves from kernel incremental meta-learning algorithm. Experimental results show that the novel algorithm outperforms both the kernel adaptive filter with multiple feedback and the kernel algorithm with single feedback in terms of convergence speed and estimation accuracy.\",\"PeriodicalId\":265426,\"journal\":{\"name\":\"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP.2015.7388230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2015.7388230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种带有处理反馈的循环核在线学习算法。延迟输出由设计良好的非线性分段函数处理,根据不同的情况增强或减弱反馈。此外,该算法还包括一种由核增量元学习算法演变而来的数据依赖自适应学习率。实验结果表明,该算法在收敛速度和估计精度方面均优于多反馈核自适应滤波和单反馈核自适应滤波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kernel incremental meta-learning with processed feedback
In this letter, a recurrent kernel online learning algorithm with a processed feedback is proposed. The delayed output is processed by a well designed nonlinear piecewise function, which strengthens or weakens the feedback in response to different situation. Furthermore, the algorithm includes a data-dependent adaptive learning rate which evolves from kernel incremental meta-learning algorithm. Experimental results show that the novel algorithm outperforms both the kernel adaptive filter with multiple feedback and the kernel algorithm with single feedback in terms of convergence speed and estimation accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信