{"title":"带附加约束的柔性作业车间调度问题的多目标超启发式算法","authors":"J. Grobler","doi":"10.1109/ISCMI.2016.46","DOIUrl":null,"url":null,"abstract":"This paper proposes a multi-objective hyperheuristic (MOO-HMHH) algorithm for the flexible job shop scheduling problem (FJSP) with sequence-dependent set-up times, auxiliary resources and machine down time. Two variations of the algorithm were implemented and evaluated on real customer datasets. The hyper-heuristic algorithms compared well to their constituent algorithms and promising results were obtained with respect to the increased generality of the hyperheuristics.","PeriodicalId":417057,"journal":{"name":"2016 3rd International Conference on Soft Computing & Machine Intelligence (ISCMI)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Multi-objective Hyper-Heuristic for the Flexible Job Shop Scheduling Problem with Additional Constraints\",\"authors\":\"J. Grobler\",\"doi\":\"10.1109/ISCMI.2016.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a multi-objective hyperheuristic (MOO-HMHH) algorithm for the flexible job shop scheduling problem (FJSP) with sequence-dependent set-up times, auxiliary resources and machine down time. Two variations of the algorithm were implemented and evaluated on real customer datasets. The hyper-heuristic algorithms compared well to their constituent algorithms and promising results were obtained with respect to the increased generality of the hyperheuristics.\",\"PeriodicalId\":417057,\"journal\":{\"name\":\"2016 3rd International Conference on Soft Computing & Machine Intelligence (ISCMI)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 3rd International Conference on Soft Computing & Machine Intelligence (ISCMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCMI.2016.46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 3rd International Conference on Soft Computing & Machine Intelligence (ISCMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCMI.2016.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Multi-objective Hyper-Heuristic for the Flexible Job Shop Scheduling Problem with Additional Constraints
This paper proposes a multi-objective hyperheuristic (MOO-HMHH) algorithm for the flexible job shop scheduling problem (FJSP) with sequence-dependent set-up times, auxiliary resources and machine down time. Two variations of the algorithm were implemented and evaluated on real customer datasets. The hyper-heuristic algorithms compared well to their constituent algorithms and promising results were obtained with respect to the increased generality of the hyperheuristics.