{"title":"燃料电池热力学","authors":"L. Khotseng","doi":"10.5772/intechopen.90141","DOIUrl":null,"url":null,"abstract":"Thermodynamics is the study of energy change from one state to another. The predictions that can be made using thermodynamic equations are essential for understanding fuel cell performance, as a fuel cell is an electrochemical device that converts the chemical energy of a fuel and an oxidant gas into electrical energy. When a fuel cell is operating, some of the input is used to create electrical energy, but another portion is converted into thermal energy, depending on the type of fuel cell. Based on the first and second laws of thermodynamics, one can write down thermodynamic potentials to specify how energy can be transferred from one form to another. This chapter examines how electrical energy and thermal energy are transferred in the hydrogen fuel cell system. It also defines how reversible fuel cell voltages, which are the maximum fuel cell performances, are affected by departures from the standard state. Basic thermodynamic concepts allow one to predict states of the fuel cell system, including the potential, temperature, pressure, volume and moles of a fuel cell. The specific topics explored in this chapter include enthalpy, entropy, specific heat, Gibbs free energy, net output voltage irreversible losses in fuel cells and fuel cell efficiency.","PeriodicalId":173761,"journal":{"name":"Thermodynamics and Energy Engineering","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fuel Cell Thermodynamics\",\"authors\":\"L. Khotseng\",\"doi\":\"10.5772/intechopen.90141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermodynamics is the study of energy change from one state to another. The predictions that can be made using thermodynamic equations are essential for understanding fuel cell performance, as a fuel cell is an electrochemical device that converts the chemical energy of a fuel and an oxidant gas into electrical energy. When a fuel cell is operating, some of the input is used to create electrical energy, but another portion is converted into thermal energy, depending on the type of fuel cell. Based on the first and second laws of thermodynamics, one can write down thermodynamic potentials to specify how energy can be transferred from one form to another. This chapter examines how electrical energy and thermal energy are transferred in the hydrogen fuel cell system. It also defines how reversible fuel cell voltages, which are the maximum fuel cell performances, are affected by departures from the standard state. Basic thermodynamic concepts allow one to predict states of the fuel cell system, including the potential, temperature, pressure, volume and moles of a fuel cell. The specific topics explored in this chapter include enthalpy, entropy, specific heat, Gibbs free energy, net output voltage irreversible losses in fuel cells and fuel cell efficiency.\",\"PeriodicalId\":173761,\"journal\":{\"name\":\"Thermodynamics and Energy Engineering\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermodynamics and Energy Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.90141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermodynamics and Energy Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.90141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermodynamics is the study of energy change from one state to another. The predictions that can be made using thermodynamic equations are essential for understanding fuel cell performance, as a fuel cell is an electrochemical device that converts the chemical energy of a fuel and an oxidant gas into electrical energy. When a fuel cell is operating, some of the input is used to create electrical energy, but another portion is converted into thermal energy, depending on the type of fuel cell. Based on the first and second laws of thermodynamics, one can write down thermodynamic potentials to specify how energy can be transferred from one form to another. This chapter examines how electrical energy and thermal energy are transferred in the hydrogen fuel cell system. It also defines how reversible fuel cell voltages, which are the maximum fuel cell performances, are affected by departures from the standard state. Basic thermodynamic concepts allow one to predict states of the fuel cell system, including the potential, temperature, pressure, volume and moles of a fuel cell. The specific topics explored in this chapter include enthalpy, entropy, specific heat, Gibbs free energy, net output voltage irreversible losses in fuel cells and fuel cell efficiency.