基于Maxout激活的深度学习用于视觉识别和验证

G. Oscos, Paul Morris, T. Khoshgoftaar
{"title":"基于Maxout激活的深度学习用于视觉识别和验证","authors":"G. Oscos, Paul Morris, T. Khoshgoftaar","doi":"10.1109/IRI.2019.00033","DOIUrl":null,"url":null,"abstract":"Visual recognition is one of the most active research topics in computer vision due to its potential applications in self-driving cars, healthcare, social media, manufacturing, etc. For image classification tasks, deep convolutional neural networks have achieved state-of-the-art results, and many activation functions have been proposed to enhance the classification performance of these networks. We explore the performance of multiple maxout activation variants on image classification, facial recognition and verification tasks using convolutional neural networks. Our experiments compare rectified linear unit, leaky rectified linear unit, scaled exponential linear unit, and hyperbolic tangent to four maxout variants. Throughout the experiments, we find that maxout networks train relatively slower than networks comprised of traditional activation functions. We found that on average, across all datasets, rectified linear units perform better than any maxout activation when the number of convolutional filters is increased six times.","PeriodicalId":295028,"journal":{"name":"2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI)","volume":"258 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Learning with Maxout Activations for Visual Recognition and Verification\",\"authors\":\"G. Oscos, Paul Morris, T. Khoshgoftaar\",\"doi\":\"10.1109/IRI.2019.00033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual recognition is one of the most active research topics in computer vision due to its potential applications in self-driving cars, healthcare, social media, manufacturing, etc. For image classification tasks, deep convolutional neural networks have achieved state-of-the-art results, and many activation functions have been proposed to enhance the classification performance of these networks. We explore the performance of multiple maxout activation variants on image classification, facial recognition and verification tasks using convolutional neural networks. Our experiments compare rectified linear unit, leaky rectified linear unit, scaled exponential linear unit, and hyperbolic tangent to four maxout variants. Throughout the experiments, we find that maxout networks train relatively slower than networks comprised of traditional activation functions. We found that on average, across all datasets, rectified linear units perform better than any maxout activation when the number of convolutional filters is increased six times.\",\"PeriodicalId\":295028,\"journal\":{\"name\":\"2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI)\",\"volume\":\"258 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI.2019.00033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2019.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于视觉识别在自动驾驶汽车、医疗保健、社交媒体、制造业等领域的潜在应用,它是计算机视觉中最活跃的研究课题之一。对于图像分类任务,深度卷积神经网络已经取得了最先进的结果,并且已经提出了许多激活函数来提高这些网络的分类性能。我们使用卷积神经网络探索了多个maxout激活变体在图像分类、面部识别和验证任务上的性能。我们的实验将整流线性单元、漏式整流线性单元、缩放指数线性单元和双曲正切与四种maxout变体进行了比较。在整个实验中,我们发现maxout网络的训练速度比由传统激活函数组成的网络要慢。我们发现,平均而言,在所有数据集中,当卷积滤波器的数量增加6倍时,整流线性单元的表现优于任何maxout激活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning with Maxout Activations for Visual Recognition and Verification
Visual recognition is one of the most active research topics in computer vision due to its potential applications in self-driving cars, healthcare, social media, manufacturing, etc. For image classification tasks, deep convolutional neural networks have achieved state-of-the-art results, and many activation functions have been proposed to enhance the classification performance of these networks. We explore the performance of multiple maxout activation variants on image classification, facial recognition and verification tasks using convolutional neural networks. Our experiments compare rectified linear unit, leaky rectified linear unit, scaled exponential linear unit, and hyperbolic tangent to four maxout variants. Throughout the experiments, we find that maxout networks train relatively slower than networks comprised of traditional activation functions. We found that on average, across all datasets, rectified linear units perform better than any maxout activation when the number of convolutional filters is increased six times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信