面向大数据集可视化导航的感知界面研究

M. Shin, L. Tsap, Dmitry Goldgof
{"title":"面向大数据集可视化导航的感知界面研究","authors":"M. Shin, L. Tsap, Dmitry Goldgof","doi":"10.1109/CVPRW.2003.10045","DOIUrl":null,"url":null,"abstract":"This paper presents a perceptual interface for visualization navigation using gesture recognition. Scientists are interested in developing interactive settings for exploring large data sets in an intuitive environment. The input consists of registered 3-D data. Bezier curves are used for trajectory analysis and classification of gestures. The method is robust and reliable: correct hand identification rate is 99.9% (from 1641 frames), modes of hand movements are correct 95.6% of the time, recognition rate (given the right mode) is 97.9%. An application to gesture-controlled visualization is also presented. The paper advances the state-of-the-art of human-computer interaction with a robust attachment- and marker-free gestural information processing for visualization.","PeriodicalId":121249,"journal":{"name":"2003 Conference on Computer Vision and Pattern Recognition Workshop","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Towards Perceptual Interface for Visualization Navigation of Large Data Sets\",\"authors\":\"M. Shin, L. Tsap, Dmitry Goldgof\",\"doi\":\"10.1109/CVPRW.2003.10045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a perceptual interface for visualization navigation using gesture recognition. Scientists are interested in developing interactive settings for exploring large data sets in an intuitive environment. The input consists of registered 3-D data. Bezier curves are used for trajectory analysis and classification of gestures. The method is robust and reliable: correct hand identification rate is 99.9% (from 1641 frames), modes of hand movements are correct 95.6% of the time, recognition rate (given the right mode) is 97.9%. An application to gesture-controlled visualization is also presented. The paper advances the state-of-the-art of human-computer interaction with a robust attachment- and marker-free gestural information processing for visualization.\",\"PeriodicalId\":121249,\"journal\":{\"name\":\"2003 Conference on Computer Vision and Pattern Recognition Workshop\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 Conference on Computer Vision and Pattern Recognition Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2003.10045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 Conference on Computer Vision and Pattern Recognition Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2003.10045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种基于手势识别的可视化导航感知界面。科学家们对开发交互式设置感兴趣,以便在直观的环境中探索大型数据集。输入由注册的三维数据组成。贝塞尔曲线用于轨迹分析和手势分类。该方法具有鲁棒性和可靠性:正确的手部识别率为99.9%(来自1641帧),手部运动模式的正确率为95.6%,识别率(给定正确的模式)为97.9%。最后给出了手势控制可视化的一个应用。本文提出了一种强大的无附件和无标记的手势信息处理可视化的人机交互技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Perceptual Interface for Visualization Navigation of Large Data Sets
This paper presents a perceptual interface for visualization navigation using gesture recognition. Scientists are interested in developing interactive settings for exploring large data sets in an intuitive environment. The input consists of registered 3-D data. Bezier curves are used for trajectory analysis and classification of gestures. The method is robust and reliable: correct hand identification rate is 99.9% (from 1641 frames), modes of hand movements are correct 95.6% of the time, recognition rate (given the right mode) is 97.9%. An application to gesture-controlled visualization is also presented. The paper advances the state-of-the-art of human-computer interaction with a robust attachment- and marker-free gestural information processing for visualization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信