有效地将基于mapreduce的计算集成到飓风损失预测模型中

Fausto Fleites, S. Cocke, Shu‐Ching Chen, S. Hamid
{"title":"有效地将基于mapreduce的计算集成到飓风损失预测模型中","authors":"Fausto Fleites, S. Cocke, Shu‐Ching Chen, S. Hamid","doi":"10.1109/IRI.2013.6642499","DOIUrl":null,"url":null,"abstract":"Homeowner insurance is a critical issue for Floridians because of the periodic threat hurricanes pose to Florida. Providing fairness into the rate-making policy process, the state of Florida has developed the Florida Public Hurricane Loss Model (FPHLM), an open, public hurricane risk model to assess the risk of wind damage to insured residential properties. For each input property portfolio, the FPHLM processes a large amount of data to provide expected losses over tens of thousand of years of simulation, for which computational efficiency is of paramount importance. This paper presents our work in integrating the atmospheric component into the FPHLM using MapReduce, which resulted in a highly efficient computing platform for generating stochastic hurricane events on a cluster of computers. The experimental results demonstrate the feasibility of utilizing MapReduce for risk modeling components.","PeriodicalId":418492,"journal":{"name":"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Efficiently integrating MapReduce-based computing into a Hurricane Loss Projection model\",\"authors\":\"Fausto Fleites, S. Cocke, Shu‐Ching Chen, S. Hamid\",\"doi\":\"10.1109/IRI.2013.6642499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Homeowner insurance is a critical issue for Floridians because of the periodic threat hurricanes pose to Florida. Providing fairness into the rate-making policy process, the state of Florida has developed the Florida Public Hurricane Loss Model (FPHLM), an open, public hurricane risk model to assess the risk of wind damage to insured residential properties. For each input property portfolio, the FPHLM processes a large amount of data to provide expected losses over tens of thousand of years of simulation, for which computational efficiency is of paramount importance. This paper presents our work in integrating the atmospheric component into the FPHLM using MapReduce, which resulted in a highly efficient computing platform for generating stochastic hurricane events on a cluster of computers. The experimental results demonstrate the feasibility of utilizing MapReduce for risk modeling components.\",\"PeriodicalId\":418492,\"journal\":{\"name\":\"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI.2013.6642499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2013.6642499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

由于飓风对佛罗里达的周期性威胁,房主保险对佛罗里达人来说是一个关键问题。为了保证利率制定过程的公平性,佛罗里达州开发了佛罗里达公共飓风损失模型(FPHLM),这是一个开放的公共飓风风险模型,用于评估风力对投保住宅财产造成的损害风险。对于每个输入属性组合,FPHLM处理大量数据,以提供数万年模拟的预期损失,其中计算效率至关重要。本文介绍了我们使用MapReduce将大气成分集成到FPHLM中的工作,这导致了一个高效的计算平台,用于在计算机集群上生成随机飓风事件。实验结果证明了利用MapReduce对风险构件进行建模的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficiently integrating MapReduce-based computing into a Hurricane Loss Projection model
Homeowner insurance is a critical issue for Floridians because of the periodic threat hurricanes pose to Florida. Providing fairness into the rate-making policy process, the state of Florida has developed the Florida Public Hurricane Loss Model (FPHLM), an open, public hurricane risk model to assess the risk of wind damage to insured residential properties. For each input property portfolio, the FPHLM processes a large amount of data to provide expected losses over tens of thousand of years of simulation, for which computational efficiency is of paramount importance. This paper presents our work in integrating the atmospheric component into the FPHLM using MapReduce, which resulted in a highly efficient computing platform for generating stochastic hurricane events on a cluster of computers. The experimental results demonstrate the feasibility of utilizing MapReduce for risk modeling components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信