论知识概念间联想记忆的学习

Zhenping Xie, Kun Wang, Yuan Liu
{"title":"论知识概念间联想记忆的学习","authors":"Zhenping Xie, Kun Wang, Yuan Liu","doi":"10.2991/ijndc.k.200515.005","DOIUrl":null,"url":null,"abstract":"Knowledge graph is firstly put forward by Google in 2012 [1], which uses graph structure to represent knowledge information on conceptual items. In knowledge graph, each graph node denotes a knowledge concept, and edges equipped with labels represent semantic relations among knowledge nodes. Knowledge graph is a very useful tool to represent and store the information in natural language text, and has been widely and successively applied to natural translation [2], question-answer system [3], and natural language understanding [4].","PeriodicalId":318936,"journal":{"name":"Int. J. Networked Distributed Comput.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On Learning Associative Relationship Memory among Knowledge Concepts\",\"authors\":\"Zhenping Xie, Kun Wang, Yuan Liu\",\"doi\":\"10.2991/ijndc.k.200515.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge graph is firstly put forward by Google in 2012 [1], which uses graph structure to represent knowledge information on conceptual items. In knowledge graph, each graph node denotes a knowledge concept, and edges equipped with labels represent semantic relations among knowledge nodes. Knowledge graph is a very useful tool to represent and store the information in natural language text, and has been widely and successively applied to natural translation [2], question-answer system [3], and natural language understanding [4].\",\"PeriodicalId\":318936,\"journal\":{\"name\":\"Int. J. Networked Distributed Comput.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Networked Distributed Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2991/ijndc.k.200515.005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Networked Distributed Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/ijndc.k.200515.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

知识图谱(Knowledge graph)最早由Google于2012年提出[1],它采用图形结构来表示概念性项目的知识信息。在知识图中,每个图节点表示一个知识概念,带有标签的边表示知识节点之间的语义关系。知识图是表示和存储自然语言文本中信息的一种非常有用的工具,在自然翻译[2]、问答系统[3]、自然语言理解[4]等领域得到了广泛而先后的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Learning Associative Relationship Memory among Knowledge Concepts
Knowledge graph is firstly put forward by Google in 2012 [1], which uses graph structure to represent knowledge information on conceptual items. In knowledge graph, each graph node denotes a knowledge concept, and edges equipped with labels represent semantic relations among knowledge nodes. Knowledge graph is a very useful tool to represent and store the information in natural language text, and has been widely and successively applied to natural translation [2], question-answer system [3], and natural language understanding [4].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信