Matthew M. Dwyer, Honghyuk Kim, L. Mawst, D. Weide
{"title":"产生亚皮秒瞬变的双均匀肖特基二极管非线性传输线","authors":"Matthew M. Dwyer, Honghyuk Kim, L. Mawst, D. Weide","doi":"10.1109/RWS.2018.8305012","DOIUrl":null,"url":null,"abstract":"We report a double-uniform Schottky diode nonlinear transmission line on gallium arsenide generating a sub-picosecond 7.2 volt transient, doubling the amplitude of the earlier record result. Our optimized diode structure provides both high cut-off frequency, high current saturation limit, and 2:1 capacitance modulation over 8 volts. Current saturation becomes a limiting factor for ultrafast waveforms when the diffusion current through the capacitive depletion region exceeds the current carrying capacity of the unde-pleted resistive region. This work highlights a critical design parameter for frequency generating diodes, providing the ground work for large power increases in ultrafast diode-based circuits.","PeriodicalId":170594,"journal":{"name":"2018 IEEE Radio and Wireless Symposium (RWS)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Double-uniform Schottky diode nonlinear transmission line generating sub-picosecond transients\",\"authors\":\"Matthew M. Dwyer, Honghyuk Kim, L. Mawst, D. Weide\",\"doi\":\"10.1109/RWS.2018.8305012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report a double-uniform Schottky diode nonlinear transmission line on gallium arsenide generating a sub-picosecond 7.2 volt transient, doubling the amplitude of the earlier record result. Our optimized diode structure provides both high cut-off frequency, high current saturation limit, and 2:1 capacitance modulation over 8 volts. Current saturation becomes a limiting factor for ultrafast waveforms when the diffusion current through the capacitive depletion region exceeds the current carrying capacity of the unde-pleted resistive region. This work highlights a critical design parameter for frequency generating diodes, providing the ground work for large power increases in ultrafast diode-based circuits.\",\"PeriodicalId\":170594,\"journal\":{\"name\":\"2018 IEEE Radio and Wireless Symposium (RWS)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Radio and Wireless Symposium (RWS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RWS.2018.8305012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Radio and Wireless Symposium (RWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RWS.2018.8305012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Double-uniform Schottky diode nonlinear transmission line generating sub-picosecond transients
We report a double-uniform Schottky diode nonlinear transmission line on gallium arsenide generating a sub-picosecond 7.2 volt transient, doubling the amplitude of the earlier record result. Our optimized diode structure provides both high cut-off frequency, high current saturation limit, and 2:1 capacitance modulation over 8 volts. Current saturation becomes a limiting factor for ultrafast waveforms when the diffusion current through the capacitive depletion region exceeds the current carrying capacity of the unde-pleted resistive region. This work highlights a critical design parameter for frequency generating diodes, providing the ground work for large power increases in ultrafast diode-based circuits.