J. Zehetner, G. Vanko, T. Izsák, E. Kováčová, M. Drzik, F. Dohnal, A. Kromka
{"title":"采用激光烧蚀和优化蚀刻技术制备MEMS传感器用金刚石悬臂梁","authors":"J. Zehetner, G. Vanko, T. Izsák, E. Kováčová, M. Drzik, F. Dohnal, A. Kromka","doi":"10.1109/ASDAM55965.2022.9966776","DOIUrl":null,"url":null,"abstract":"The properties of diamond make it an attractive material for MEMS and sensor devices. We present the feasibility to fabricate membranes and cantilevers made of nano-(micro-) crystalline diamond films grown on Si/SiO2 substrates using microwave chemical vapour deposition (MWCVD). The patterning of micromechanical structures was performed by a combined process of femtosecond laser ablation and wet etching. We designed cantilever structures with varying lengths and widths (25,50,100,200 and 300 µm). The cantilevers were made in a symmetric left- and right-hand configuration. An additional laser treatment was used to modify the mechanical properties of the left-hand cantilever. The deflection of the laser-treated, and non-treated sections was measured. The global mechanical system properties were simulated and corresponded with high accuracy to the measured results of deflection.","PeriodicalId":148302,"journal":{"name":"2022 14th International Conference on Advanced Semiconductor Devices and Microsystems (ASDAM)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diamond cantilevers for MEMS sensor applications fabricated by laser ablation and optimized etching techniques\",\"authors\":\"J. Zehetner, G. Vanko, T. Izsák, E. Kováčová, M. Drzik, F. Dohnal, A. Kromka\",\"doi\":\"10.1109/ASDAM55965.2022.9966776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The properties of diamond make it an attractive material for MEMS and sensor devices. We present the feasibility to fabricate membranes and cantilevers made of nano-(micro-) crystalline diamond films grown on Si/SiO2 substrates using microwave chemical vapour deposition (MWCVD). The patterning of micromechanical structures was performed by a combined process of femtosecond laser ablation and wet etching. We designed cantilever structures with varying lengths and widths (25,50,100,200 and 300 µm). The cantilevers were made in a symmetric left- and right-hand configuration. An additional laser treatment was used to modify the mechanical properties of the left-hand cantilever. The deflection of the laser-treated, and non-treated sections was measured. The global mechanical system properties were simulated and corresponded with high accuracy to the measured results of deflection.\",\"PeriodicalId\":148302,\"journal\":{\"name\":\"2022 14th International Conference on Advanced Semiconductor Devices and Microsystems (ASDAM)\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 14th International Conference on Advanced Semiconductor Devices and Microsystems (ASDAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASDAM55965.2022.9966776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Advanced Semiconductor Devices and Microsystems (ASDAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASDAM55965.2022.9966776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Diamond cantilevers for MEMS sensor applications fabricated by laser ablation and optimized etching techniques
The properties of diamond make it an attractive material for MEMS and sensor devices. We present the feasibility to fabricate membranes and cantilevers made of nano-(micro-) crystalline diamond films grown on Si/SiO2 substrates using microwave chemical vapour deposition (MWCVD). The patterning of micromechanical structures was performed by a combined process of femtosecond laser ablation and wet etching. We designed cantilever structures with varying lengths and widths (25,50,100,200 and 300 µm). The cantilevers were made in a symmetric left- and right-hand configuration. An additional laser treatment was used to modify the mechanical properties of the left-hand cantilever. The deflection of the laser-treated, and non-treated sections was measured. The global mechanical system properties were simulated and corresponded with high accuracy to the measured results of deflection.