从从头算为基础的表面系统地构建全局有效模型的新方法:对高分辨率分子光谱分析的新见解。

M. Rey
{"title":"从从头算为基础的表面系统地构建全局有效模型的新方法:对高分辨率分子光谱分析的新见解。","authors":"M. Rey","doi":"10.1063/5.0089097","DOIUrl":null,"url":null,"abstract":"In this paper, a novel methodology is presented for the construction of ab initio effective rotation-vibration spectroscopic models from potential energy and dipole moment surfaces. Non-empirical effective Hamiltonians are obtained via the block-diagonalization of selected variationally computed eigenvector matrices. For the first time, the derivation of an effective dipole moment is carried out in a systematic way. This general approach can be implemented quite easily in most of the variational computer codes and turns out to be a clear alternative to the rather involved Van Vleck perturbation method. Symmetry is exploited at all stages to translate first-principles calculations into a set of spectroscopic parameters to be further refined on experiment. We demonstrate on H2CO, PH3, CH4, C2H4, and SF6 that the proposed effective model can provide crucial information to spectroscopists within a very short time compared to empirical spectroscopic models. This approach brings a new insight into high-resolution spectrum analysis of polyatomic molecules and will be also of great help in the modeling of hot atmospheres where completeness is important.","PeriodicalId":446961,"journal":{"name":"The Journal of chemical physics","volume":"480 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Novel methodology for systematically constructing global effective models from ab initio-based surfaces: A new insight into high-resolution molecular spectra analysis.\",\"authors\":\"M. Rey\",\"doi\":\"10.1063/5.0089097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel methodology is presented for the construction of ab initio effective rotation-vibration spectroscopic models from potential energy and dipole moment surfaces. Non-empirical effective Hamiltonians are obtained via the block-diagonalization of selected variationally computed eigenvector matrices. For the first time, the derivation of an effective dipole moment is carried out in a systematic way. This general approach can be implemented quite easily in most of the variational computer codes and turns out to be a clear alternative to the rather involved Van Vleck perturbation method. Symmetry is exploited at all stages to translate first-principles calculations into a set of spectroscopic parameters to be further refined on experiment. We demonstrate on H2CO, PH3, CH4, C2H4, and SF6 that the proposed effective model can provide crucial information to spectroscopists within a very short time compared to empirical spectroscopic models. This approach brings a new insight into high-resolution spectrum analysis of polyatomic molecules and will be also of great help in the modeling of hot atmospheres where completeness is important.\",\"PeriodicalId\":446961,\"journal\":{\"name\":\"The Journal of chemical physics\",\"volume\":\"480 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of chemical physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0089097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of chemical physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0089097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文提出了一种利用势能和偶极矩曲面从头开始建立有效旋转-振动谱模型的新方法。通过选择变分计算的特征向量矩阵的块对角化得到非经验有效哈密顿量。本文首次系统地推导了有效偶极矩。这种一般的方法可以很容易地在大多数变分计算机代码中实现,并被证明是相当复杂的范弗莱克摄动方法的一个明确的替代方法。对称性在所有阶段都被利用,将第一性原理计算转化为一组光谱参数,以便在实验中进一步完善。我们在H2CO, PH3, CH4, C2H4和SF6上证明,与经验光谱模型相比,所提出的有效模型可以在很短的时间内为光谱学家提供关键信息。这种方法为多原子分子的高分辨率光谱分析带来了新的见解,也将对热大气的建模有很大的帮助,因为热大气的完整性是很重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel methodology for systematically constructing global effective models from ab initio-based surfaces: A new insight into high-resolution molecular spectra analysis.
In this paper, a novel methodology is presented for the construction of ab initio effective rotation-vibration spectroscopic models from potential energy and dipole moment surfaces. Non-empirical effective Hamiltonians are obtained via the block-diagonalization of selected variationally computed eigenvector matrices. For the first time, the derivation of an effective dipole moment is carried out in a systematic way. This general approach can be implemented quite easily in most of the variational computer codes and turns out to be a clear alternative to the rather involved Van Vleck perturbation method. Symmetry is exploited at all stages to translate first-principles calculations into a set of spectroscopic parameters to be further refined on experiment. We demonstrate on H2CO, PH3, CH4, C2H4, and SF6 that the proposed effective model can provide crucial information to spectroscopists within a very short time compared to empirical spectroscopic models. This approach brings a new insight into high-resolution spectrum analysis of polyatomic molecules and will be also of great help in the modeling of hot atmospheres where completeness is important.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信