{"title":"接受PID","authors":"Pat Dixon","doi":"10.1109/ppic.2018.8502191","DOIUrl":null,"url":null,"abstract":"Despite being ubiquitous in industrial control system usage, the PID (Proportional, Integral, Derivative) algorithm is a mystery to many. Since its theoretical analysis was introduced by Minorsky nearly 100 years ago [1], it has been explained primarily by its representation in the Positional form of the equation. This paper will present the PID algorithm as a PVA (Position, Velocity, Acceleration) algorithm, which explains the theory based on the Velocity instead of the Positional form of the equation. PVA is not a new controller but a different representation of the PID from a Velocity instead of Positional view. The paper does not intend to suggest that the implementation of controllers should change from PID to PVA; only that PVA provides a more intuitive way to introduce the theory so that engineers better understand how to configure and tune PID control loops. Despite a long history of teaching the Positional form, and implementation of the Positional (PID) form in control systems, the Velocity (PVA) form offers a way to introduce the algorithm in a more familiar and understandable way to engineering students and practicing engineers.","PeriodicalId":170960,"journal":{"name":"2018 IEEE IAS Pulp, Paper and Forest Industries Conference (PPFIC)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coming to Terms with PID\",\"authors\":\"Pat Dixon\",\"doi\":\"10.1109/ppic.2018.8502191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite being ubiquitous in industrial control system usage, the PID (Proportional, Integral, Derivative) algorithm is a mystery to many. Since its theoretical analysis was introduced by Minorsky nearly 100 years ago [1], it has been explained primarily by its representation in the Positional form of the equation. This paper will present the PID algorithm as a PVA (Position, Velocity, Acceleration) algorithm, which explains the theory based on the Velocity instead of the Positional form of the equation. PVA is not a new controller but a different representation of the PID from a Velocity instead of Positional view. The paper does not intend to suggest that the implementation of controllers should change from PID to PVA; only that PVA provides a more intuitive way to introduce the theory so that engineers better understand how to configure and tune PID control loops. Despite a long history of teaching the Positional form, and implementation of the Positional (PID) form in control systems, the Velocity (PVA) form offers a way to introduce the algorithm in a more familiar and understandable way to engineering students and practicing engineers.\",\"PeriodicalId\":170960,\"journal\":{\"name\":\"2018 IEEE IAS Pulp, Paper and Forest Industries Conference (PPFIC)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE IAS Pulp, Paper and Forest Industries Conference (PPFIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ppic.2018.8502191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE IAS Pulp, Paper and Forest Industries Conference (PPFIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ppic.2018.8502191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Despite being ubiquitous in industrial control system usage, the PID (Proportional, Integral, Derivative) algorithm is a mystery to many. Since its theoretical analysis was introduced by Minorsky nearly 100 years ago [1], it has been explained primarily by its representation in the Positional form of the equation. This paper will present the PID algorithm as a PVA (Position, Velocity, Acceleration) algorithm, which explains the theory based on the Velocity instead of the Positional form of the equation. PVA is not a new controller but a different representation of the PID from a Velocity instead of Positional view. The paper does not intend to suggest that the implementation of controllers should change from PID to PVA; only that PVA provides a more intuitive way to introduce the theory so that engineers better understand how to configure and tune PID control loops. Despite a long history of teaching the Positional form, and implementation of the Positional (PID) form in control systems, the Velocity (PVA) form offers a way to introduce the algorithm in a more familiar and understandable way to engineering students and practicing engineers.