论平面直线的Voronoi图

G. Barequet, K. Vyatkina
{"title":"论平面直线的Voronoi图","authors":"G. Barequet, K. Vyatkina","doi":"10.1109/ICCSA.2009.39","DOIUrl":null,"url":null,"abstract":"We describe a method based on the wavefront propagation, which computes a multiplicatively weighted Voronoi diagram for a set $L$ of $n$ lines in the plane in $O(n^2 \\log n)$ time and $O(n^2)$ space. In the process, we derive complexity bounds and certain structural properties of such diagrams. An advantage of our approach over the general purpose machinery, which requires computation of the lower envelope of a set of halfplanes in three-dimensional space, lies in its relative simplicity. Besides, we point out that the unweighted Voronoi diagram for $n$ lines in the plane has a simple structure, and can be obtained in optimal $\\Theta(n^2)$ time and space.","PeriodicalId":387286,"journal":{"name":"2009 International Conference on Computational Science and Its Applications","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On Voronoi Diagrams for Lines in the Plane\",\"authors\":\"G. Barequet, K. Vyatkina\",\"doi\":\"10.1109/ICCSA.2009.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a method based on the wavefront propagation, which computes a multiplicatively weighted Voronoi diagram for a set $L$ of $n$ lines in the plane in $O(n^2 \\\\log n)$ time and $O(n^2)$ space. In the process, we derive complexity bounds and certain structural properties of such diagrams. An advantage of our approach over the general purpose machinery, which requires computation of the lower envelope of a set of halfplanes in three-dimensional space, lies in its relative simplicity. Besides, we point out that the unweighted Voronoi diagram for $n$ lines in the plane has a simple structure, and can be obtained in optimal $\\\\Theta(n^2)$ time and space.\",\"PeriodicalId\":387286,\"journal\":{\"name\":\"2009 International Conference on Computational Science and Its Applications\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Computational Science and Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSA.2009.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Computational Science and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSA.2009.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们描述了一种基于波前传播的方法,该方法在$O(n^2 \log n)$时间和$O(n^2)$空间中对平面上的一组$L$$n$线计算相乘加权Voronoi图。在此过程中,我们导出了这种图的复杂度界限和某些结构性质。与需要计算三维空间中一组半平面的下包络的通用机器相比,我们的方法的一个优势在于它相对简单。此外,我们还指出,平面上$n$直线的未加权Voronoi图结构简单,可以在最优的$\Theta(n^2)$时间和空间中得到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Voronoi Diagrams for Lines in the Plane
We describe a method based on the wavefront propagation, which computes a multiplicatively weighted Voronoi diagram for a set $L$ of $n$ lines in the plane in $O(n^2 \log n)$ time and $O(n^2)$ space. In the process, we derive complexity bounds and certain structural properties of such diagrams. An advantage of our approach over the general purpose machinery, which requires computation of the lower envelope of a set of halfplanes in three-dimensional space, lies in its relative simplicity. Besides, we point out that the unweighted Voronoi diagram for $n$ lines in the plane has a simple structure, and can be obtained in optimal $\Theta(n^2)$ time and space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信