D. D. Boer, O. S. V. Rheenen, E. V. Zelm, R. Bergmann, J. Bergmann, N. Howard
{"title":"测量滑水跳跃时加速度的可穿戴传感器网络的设计考虑","authors":"D. D. Boer, O. S. V. Rheenen, E. V. Zelm, R. Bergmann, J. Bergmann, N. Howard","doi":"10.1109/BSN.2013.6575480","DOIUrl":null,"url":null,"abstract":"A remarkably high number of water-skiers suffer from injuries on the lower back and the lower extremity as a result of jumping. A possible explanation for this is the vertical forces that occur on the body during landing, caused by the large amount of deceleration at the moment the skier hits the water surface. The amplitude of the accelerations might be a reason for concern for juveniles participating in this type of sport, due to the vulnerability to high loads during growth. A wearable sensor system could inform both the skier and coach about the impact level encountered by young water-skiers. Pilot testing showed decelerations occurred far above those measured by a 5 g accelerometer system. High-frequency camera data and modeling showed multiples of 10 g can be expected during landing. Therefore, it is suggested that 100 g accelerometers are integrated into the proposed body sensor network design.","PeriodicalId":138242,"journal":{"name":"2013 IEEE International Conference on Body Sensor Networks","volume":"238 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design considerations for a wearable sensor network that measures accelerations during Water-Ski jumping\",\"authors\":\"D. D. Boer, O. S. V. Rheenen, E. V. Zelm, R. Bergmann, J. Bergmann, N. Howard\",\"doi\":\"10.1109/BSN.2013.6575480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A remarkably high number of water-skiers suffer from injuries on the lower back and the lower extremity as a result of jumping. A possible explanation for this is the vertical forces that occur on the body during landing, caused by the large amount of deceleration at the moment the skier hits the water surface. The amplitude of the accelerations might be a reason for concern for juveniles participating in this type of sport, due to the vulnerability to high loads during growth. A wearable sensor system could inform both the skier and coach about the impact level encountered by young water-skiers. Pilot testing showed decelerations occurred far above those measured by a 5 g accelerometer system. High-frequency camera data and modeling showed multiples of 10 g can be expected during landing. Therefore, it is suggested that 100 g accelerometers are integrated into the proposed body sensor network design.\",\"PeriodicalId\":138242,\"journal\":{\"name\":\"2013 IEEE International Conference on Body Sensor Networks\",\"volume\":\"238 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Body Sensor Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2013.6575480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Body Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2013.6575480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design considerations for a wearable sensor network that measures accelerations during Water-Ski jumping
A remarkably high number of water-skiers suffer from injuries on the lower back and the lower extremity as a result of jumping. A possible explanation for this is the vertical forces that occur on the body during landing, caused by the large amount of deceleration at the moment the skier hits the water surface. The amplitude of the accelerations might be a reason for concern for juveniles participating in this type of sport, due to the vulnerability to high loads during growth. A wearable sensor system could inform both the skier and coach about the impact level encountered by young water-skiers. Pilot testing showed decelerations occurred far above those measured by a 5 g accelerometer system. High-frequency camera data and modeling showed multiples of 10 g can be expected during landing. Therefore, it is suggested that 100 g accelerometers are integrated into the proposed body sensor network design.