一种基于爱的FCM算法用于胆结石CT图像分割

Wang Hong-yan, Lv Ji-xing
{"title":"一种基于爱的FCM算法用于胆结石CT图像分割","authors":"Wang Hong-yan, Lv Ji-xing","doi":"10.1109/ICCSE.2015.7250345","DOIUrl":null,"url":null,"abstract":"To acquire more accurate CT image segmentation results of gallstone, this paper presents a Lore-Based FCM algorithm to conquer the deficiency of tradition FCM method. A penalty term is introduced to objective function to enlarge the range of specified class and achieve higher segmentation accuracy. The result of simulation shows that Lore-Based FCM can obviously improve the segmentation quality. The improved algorithm is more rapid and efficiency than the traditional FCM.","PeriodicalId":311451,"journal":{"name":"2015 10th International Conference on Computer Science & Education (ICCSE)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A lore-based FCM algorithm for gallstone CT images segmentation\",\"authors\":\"Wang Hong-yan, Lv Ji-xing\",\"doi\":\"10.1109/ICCSE.2015.7250345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To acquire more accurate CT image segmentation results of gallstone, this paper presents a Lore-Based FCM algorithm to conquer the deficiency of tradition FCM method. A penalty term is introduced to objective function to enlarge the range of specified class and achieve higher segmentation accuracy. The result of simulation shows that Lore-Based FCM can obviously improve the segmentation quality. The improved algorithm is more rapid and efficiency than the traditional FCM.\",\"PeriodicalId\":311451,\"journal\":{\"name\":\"2015 10th International Conference on Computer Science & Education (ICCSE)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 10th International Conference on Computer Science & Education (ICCSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSE.2015.7250345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th International Conference on Computer Science & Education (ICCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSE.2015.7250345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了获得更准确的胆结石CT图像分割结果,本文提出了一种基于lore的FCM算法,以克服传统FCM方法的不足。在目标函数中引入惩罚项,扩大了指定类的范围,提高了分割精度。仿真结果表明,基于知识的FCM可以明显提高分割质量。与传统的FCM相比,改进后的算法速度更快,效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A lore-based FCM algorithm for gallstone CT images segmentation
To acquire more accurate CT image segmentation results of gallstone, this paper presents a Lore-Based FCM algorithm to conquer the deficiency of tradition FCM method. A penalty term is introduced to objective function to enlarge the range of specified class and achieve higher segmentation accuracy. The result of simulation shows that Lore-Based FCM can obviously improve the segmentation quality. The improved algorithm is more rapid and efficiency than the traditional FCM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信