移动传感路径的自适应重构

Ariel Shallom, H. Kirshner, M. Porat
{"title":"移动传感路径的自适应重构","authors":"Ariel Shallom, H. Kirshner, M. Porat","doi":"10.1109/SSP.2018.8450757","DOIUrl":null,"url":null,"abstract":"We address the problem of reconstructing missing parts of mobile sensing signals. Such a case occurs when sensor information is occluded or not transmitted over finite periods of time. As the sampling rate along each path is essentially unlimited, we consider the asymptotic case of having continuous-time information from the sensor. We embed the partially available signal in a functional space of smooth and finite-energy functions, while adapting the parameters of the space to the signal at hand. We then analytically solve a specifically designed error measure and obtain a minimum-norm reconstruction for the missing parts. We demonstrate the proposed algorithm for both simulated- and real data.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Adaptive Reconstruction Along Mobile Sensing Paths\",\"authors\":\"Ariel Shallom, H. Kirshner, M. Porat\",\"doi\":\"10.1109/SSP.2018.8450757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of reconstructing missing parts of mobile sensing signals. Such a case occurs when sensor information is occluded or not transmitted over finite periods of time. As the sampling rate along each path is essentially unlimited, we consider the asymptotic case of having continuous-time information from the sensor. We embed the partially available signal in a functional space of smooth and finite-energy functions, while adapting the parameters of the space to the signal at hand. We then analytically solve a specifically designed error measure and obtain a minimum-norm reconstruction for the missing parts. We demonstrate the proposed algorithm for both simulated- and real data.\",\"PeriodicalId\":330528,\"journal\":{\"name\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP.2018.8450757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们解决了重建移动传感信号缺失部分的问题。当传感器信息在有限的时间内被阻塞或不传输时,就会发生这种情况。由于沿每条路径的采样率基本上是无限的,我们考虑具有来自传感器的连续时间信息的渐近情况。我们将部分可用的信号嵌入到光滑有限能量函数的函数空间中,同时使空间的参数适应手头的信号。然后,我们解析求解一个特定设计的误差度量,并获得缺失部分的最小范数重构。我们对模拟数据和实际数据进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Reconstruction Along Mobile Sensing Paths
We address the problem of reconstructing missing parts of mobile sensing signals. Such a case occurs when sensor information is occluded or not transmitted over finite periods of time. As the sampling rate along each path is essentially unlimited, we consider the asymptotic case of having continuous-time information from the sensor. We embed the partially available signal in a functional space of smooth and finite-energy functions, while adapting the parameters of the space to the signal at hand. We then analytically solve a specifically designed error measure and obtain a minimum-norm reconstruction for the missing parts. We demonstrate the proposed algorithm for both simulated- and real data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信