Zhicheng Li, Zhulu Song, Zhaojin Wang, Jiayun Sun, Kai Wang
{"title":"基于CdSe量子点和聚(3-己基噻吩)的光电突触器件的光响应和记忆效应","authors":"Zhicheng Li, Zhulu Song, Zhaojin Wang, Jiayun Sun, Kai Wang","doi":"10.1109/ICTA56932.2022.9962982","DOIUrl":null,"url":null,"abstract":"The optical responses and memory effects of photoelectric synaptic devices based on CdSe quantum dots (QDs) and poly(3-hexylthiophene) (P3HT) are studied in this work. Compared with devices only incorporating CdSe QDs, the devices based on CdSe QDs and P3HT exhibit higher photocurrents because the heterojunction formed by CdSe QDs and P3HT enhances the separation of photogenerated excitons, and the loss of excitons in the QDs reduces. In addition, due to the effect of the surface defect trapping charge of CdSe QDs, the photocurrent of the device can still be maintained for more than 100 seconds under the condition of zero gate voltage. Finally, the device can perform each synaptic activity with a low power consumption of 12.9 pJ by adjusting the concentration of QDs.","PeriodicalId":325602,"journal":{"name":"2022 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Photoresponses and Memory Effects in Optoelectronic Synaptic Devices Based on CdSe Quantum Dots and Poly(3-hexylthiophene)\",\"authors\":\"Zhicheng Li, Zhulu Song, Zhaojin Wang, Jiayun Sun, Kai Wang\",\"doi\":\"10.1109/ICTA56932.2022.9962982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optical responses and memory effects of photoelectric synaptic devices based on CdSe quantum dots (QDs) and poly(3-hexylthiophene) (P3HT) are studied in this work. Compared with devices only incorporating CdSe QDs, the devices based on CdSe QDs and P3HT exhibit higher photocurrents because the heterojunction formed by CdSe QDs and P3HT enhances the separation of photogenerated excitons, and the loss of excitons in the QDs reduces. In addition, due to the effect of the surface defect trapping charge of CdSe QDs, the photocurrent of the device can still be maintained for more than 100 seconds under the condition of zero gate voltage. Finally, the device can perform each synaptic activity with a low power consumption of 12.9 pJ by adjusting the concentration of QDs.\",\"PeriodicalId\":325602,\"journal\":{\"name\":\"2022 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTA56932.2022.9962982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTA56932.2022.9962982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Photoresponses and Memory Effects in Optoelectronic Synaptic Devices Based on CdSe Quantum Dots and Poly(3-hexylthiophene)
The optical responses and memory effects of photoelectric synaptic devices based on CdSe quantum dots (QDs) and poly(3-hexylthiophene) (P3HT) are studied in this work. Compared with devices only incorporating CdSe QDs, the devices based on CdSe QDs and P3HT exhibit higher photocurrents because the heterojunction formed by CdSe QDs and P3HT enhances the separation of photogenerated excitons, and the loss of excitons in the QDs reduces. In addition, due to the effect of the surface defect trapping charge of CdSe QDs, the photocurrent of the device can still be maintained for more than 100 seconds under the condition of zero gate voltage. Finally, the device can perform each synaptic activity with a low power consumption of 12.9 pJ by adjusting the concentration of QDs.