基于稀疏表示的自适应干扰抑制

Yishu Shi, F. Ge, Ying Chen, Sui-ling Ren
{"title":"基于稀疏表示的自适应干扰抑制","authors":"Yishu Shi, F. Ge, Ying Chen, Sui-ling Ren","doi":"10.23919/OCEANS.2015.7401918","DOIUrl":null,"url":null,"abstract":"Passive sources localization in the presence of strong interferences is generally a difficult problem. A sparse-representation-based adaptive interference suppression (SRAIS) method is proposed in this paper for interference suppression and bearing estimation, which can reduce the power loss of the TOI signal and have more accurate direction-of-arrival (DOA) estimation, especially when the input powers of the TOI signal and the interferences are at the almost same level. Simulation and experimental results are also given.","PeriodicalId":403976,"journal":{"name":"OCEANS 2015 - MTS/IEEE Washington","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse-representation-based adaptive interference suppression\",\"authors\":\"Yishu Shi, F. Ge, Ying Chen, Sui-ling Ren\",\"doi\":\"10.23919/OCEANS.2015.7401918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Passive sources localization in the presence of strong interferences is generally a difficult problem. A sparse-representation-based adaptive interference suppression (SRAIS) method is proposed in this paper for interference suppression and bearing estimation, which can reduce the power loss of the TOI signal and have more accurate direction-of-arrival (DOA) estimation, especially when the input powers of the TOI signal and the interferences are at the almost same level. Simulation and experimental results are also given.\",\"PeriodicalId\":403976,\"journal\":{\"name\":\"OCEANS 2015 - MTS/IEEE Washington\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OCEANS 2015 - MTS/IEEE Washington\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/OCEANS.2015.7401918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2015 - MTS/IEEE Washington","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/OCEANS.2015.7401918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在强干扰条件下,无源源的定位通常是一个难题。本文提出了一种基于稀疏表示的自适应干扰抑制(SRAIS)方法,用于干扰抑制和方位估计,特别是当TOI信号的输入功率与干扰的输入功率几乎相同时,该方法可以降低TOI信号的功率损失,获得更准确的DOA估计。并给出了仿真和实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse-representation-based adaptive interference suppression
Passive sources localization in the presence of strong interferences is generally a difficult problem. A sparse-representation-based adaptive interference suppression (SRAIS) method is proposed in this paper for interference suppression and bearing estimation, which can reduce the power loss of the TOI signal and have more accurate direction-of-arrival (DOA) estimation, especially when the input powers of the TOI signal and the interferences are at the almost same level. Simulation and experimental results are also given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信