满足按需决策需求的混合大数据仓库

Meryeme El Houari, Maryem Rhanoui, B. E. Asri
{"title":"满足按需决策需求的混合大数据仓库","authors":"Meryeme El Houari, Maryem Rhanoui, B. E. Asri","doi":"10.1109/EITECH.2017.8255261","DOIUrl":null,"url":null,"abstract":"Every day trillions of data are generated across the world and put the information systems facing the emergence of big data phenomenon. This vertiginous evolution makes the enterprise confronting the challenge to build its own big data. To achieve the challenge, the enterprise is supposed to embark on big investments in terms of resource and material to process petabytes of diverse data, this last are sometimes useful and sometimes useless. The problem here is how to optimize data relevancy to extract value from the big data sources. From this Reasons, we propose in this paper an ETL and MapReduce Hybrid Approach based on Data Filtering and Processing to build an effective on-demand Dimensional Big Data, enabling enterprises to process relevant data in efficient and effective way according to the stakeholder's needs.","PeriodicalId":447139,"journal":{"name":"2017 International Conference on Electrical and Information Technologies (ICEIT)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Hybrid big data warehouse for on-demand decision needs\",\"authors\":\"Meryeme El Houari, Maryem Rhanoui, B. E. Asri\",\"doi\":\"10.1109/EITECH.2017.8255261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Every day trillions of data are generated across the world and put the information systems facing the emergence of big data phenomenon. This vertiginous evolution makes the enterprise confronting the challenge to build its own big data. To achieve the challenge, the enterprise is supposed to embark on big investments in terms of resource and material to process petabytes of diverse data, this last are sometimes useful and sometimes useless. The problem here is how to optimize data relevancy to extract value from the big data sources. From this Reasons, we propose in this paper an ETL and MapReduce Hybrid Approach based on Data Filtering and Processing to build an effective on-demand Dimensional Big Data, enabling enterprises to process relevant data in efficient and effective way according to the stakeholder's needs.\",\"PeriodicalId\":447139,\"journal\":{\"name\":\"2017 International Conference on Electrical and Information Technologies (ICEIT)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Electrical and Information Technologies (ICEIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EITECH.2017.8255261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Electrical and Information Technologies (ICEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EITECH.2017.8255261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

全球每天产生数万亿的数据,使信息系统面临大数据现象的出现。这种令人眼花缭乱的演变使企业面临着建立自己的大数据的挑战。为了实现这一挑战,企业应该在资源和材料方面进行大量投资,以处理pb级的各种数据,后者有时有用,有时无用。这里的问题是如何优化数据相关性,从大数据源中提取价值。基于此,本文提出基于数据过滤和处理的ETL和MapReduce混合方法,构建有效的按需维度大数据,使企业能够根据利益相关者的需求,高效、有效地处理相关数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid big data warehouse for on-demand decision needs
Every day trillions of data are generated across the world and put the information systems facing the emergence of big data phenomenon. This vertiginous evolution makes the enterprise confronting the challenge to build its own big data. To achieve the challenge, the enterprise is supposed to embark on big investments in terms of resource and material to process petabytes of diverse data, this last are sometimes useful and sometimes useless. The problem here is how to optimize data relevancy to extract value from the big data sources. From this Reasons, we propose in this paper an ETL and MapReduce Hybrid Approach based on Data Filtering and Processing to build an effective on-demand Dimensional Big Data, enabling enterprises to process relevant data in efficient and effective way according to the stakeholder's needs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信