平滑参数选择与稳定p进时间信号

R. Sabre, W. Horrigue
{"title":"平滑参数选择与稳定p进时间信号","authors":"R. Sabre, W. Horrigue","doi":"10.5121/csit.2023.130902","DOIUrl":null,"url":null,"abstract":"The estimation of the spectral density of stable p-adic signals is already done. Such estimation is based on smoothing the periodogram by using a spectral window. The convergence rate of this estimator depends on bandwidth of spectral window (called the smoothing parameter). The aim of this work is to give a technique for selecting the optimal parameter, i.e. the parameter that achieves the estimation with the best convergence rate. For that purpose, we were inspired by the cross-validation method of finding the optimal parameter. This method minimizes the integrated square error estimate.","PeriodicalId":176190,"journal":{"name":"Signal Image Processing and Multimedia","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smoothing Parameter Selection and Alpha-Stable P-Adic Time Signals\",\"authors\":\"R. Sabre, W. Horrigue\",\"doi\":\"10.5121/csit.2023.130902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The estimation of the spectral density of stable p-adic signals is already done. Such estimation is based on smoothing the periodogram by using a spectral window. The convergence rate of this estimator depends on bandwidth of spectral window (called the smoothing parameter). The aim of this work is to give a technique for selecting the optimal parameter, i.e. the parameter that achieves the estimation with the best convergence rate. For that purpose, we were inspired by the cross-validation method of finding the optimal parameter. This method minimizes the integrated square error estimate.\",\"PeriodicalId\":176190,\"journal\":{\"name\":\"Signal Image Processing and Multimedia\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Image Processing and Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/csit.2023.130902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Image Processing and Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2023.130902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对稳定p进信号的谱密度进行了估计。这种估计是基于使用谱窗平滑周期图。该估计器的收敛速度取决于谱窗的带宽(称为平滑参数)。这项工作的目的是给出一种选择最优参数的技术,即以最佳收敛速度实现估计的参数。为此,我们受到寻找最佳参数的交叉验证方法的启发。该方法使积分平方误差估计最小化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smoothing Parameter Selection and Alpha-Stable P-Adic Time Signals
The estimation of the spectral density of stable p-adic signals is already done. Such estimation is based on smoothing the periodogram by using a spectral window. The convergence rate of this estimator depends on bandwidth of spectral window (called the smoothing parameter). The aim of this work is to give a technique for selecting the optimal parameter, i.e. the parameter that achieves the estimation with the best convergence rate. For that purpose, we were inspired by the cross-validation method of finding the optimal parameter. This method minimizes the integrated square error estimate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信