{"title":"基于成型条件对聚乳酸影响的球晶微观结构形成模拟","authors":"H. Liqin, K. Tatsuno, Y. Aoyagi","doi":"10.23967/wccm-apcom.2022.107","DOIUrl":null,"url":null,"abstract":". This study investigates a simulation model predicting spherulite microstructure formation based on experimental observations. The crystallization process of polylactic acid is observed at different molding temperatures by in-situ observation, and the rate of spherulite formation and growth is estimated. Furthermore, according to the Turnbull-Fisher primary nucleation model and the Lauritzen-Hoffman secondary nucleation model, Monte Carlo simulations of spherulite microstructure formation are performed based on the obtained experimental results. The validity of the method is verified by a comparison of the simulated and the experimental results.","PeriodicalId":429847,"journal":{"name":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spherulite Microstructure Formation Simulation Based on Effect of Molding Conditions on Polylactic Acid\",\"authors\":\"H. Liqin, K. Tatsuno, Y. Aoyagi\",\"doi\":\"10.23967/wccm-apcom.2022.107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". This study investigates a simulation model predicting spherulite microstructure formation based on experimental observations. The crystallization process of polylactic acid is observed at different molding temperatures by in-situ observation, and the rate of spherulite formation and growth is estimated. Furthermore, according to the Turnbull-Fisher primary nucleation model and the Lauritzen-Hoffman secondary nucleation model, Monte Carlo simulations of spherulite microstructure formation are performed based on the obtained experimental results. The validity of the method is verified by a comparison of the simulated and the experimental results.\",\"PeriodicalId\":429847,\"journal\":{\"name\":\"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23967/wccm-apcom.2022.107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/wccm-apcom.2022.107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spherulite Microstructure Formation Simulation Based on Effect of Molding Conditions on Polylactic Acid
. This study investigates a simulation model predicting spherulite microstructure formation based on experimental observations. The crystallization process of polylactic acid is observed at different molding temperatures by in-situ observation, and the rate of spherulite formation and growth is estimated. Furthermore, according to the Turnbull-Fisher primary nucleation model and the Lauritzen-Hoffman secondary nucleation model, Monte Carlo simulations of spherulite microstructure formation are performed based on the obtained experimental results. The validity of the method is verified by a comparison of the simulated and the experimental results.