Pi-CEP:在历史模式空间上使用范围查询的预测性复杂事件处理

Syed Gillani, A. Kammoun, K. Singh, Julien Subercaze, C. Gravier, J. Fayolle, F. Laforest
{"title":"Pi-CEP:在历史模式空间上使用范围查询的预测性复杂事件处理","authors":"Syed Gillani, A. Kammoun, K. Singh, Julien Subercaze, C. Gravier, J. Fayolle, F. Laforest","doi":"10.1109/ICDMW.2017.167","DOIUrl":null,"url":null,"abstract":"Predictive Complex Event Processing (CEP) constitutes the next phase of CEP evolution and provides future predictive states of the partially matched complex sequences. In this paper, we demonstrate our novel predictive CEP system and show that this problem can be solved while leveraging existing data modelling, query execution and optimisation frameworks. We model the predictive detection of events over an N-dimensional historical matched sequence space. Hence, a predictive set of events can be determined by answering the range queries over the historical sequence space. In order to take advantage of range search over 1-dimensional data structures, we transform the N-dimensional space into 1-dimension using space filling z-order curve. We propose a compressed index structure to store 1- dimensional data and execute customised range query techniques. Furthermore, we propose an approximate summarisation technique, over the historical space of top-k most infrequent range queries, to cater catastrophic forgetting of older matches. Two real-world datasets are used to demonstrate the feasibility of our proposed techniques. We demonstrate that our system can efficiently predict complex events and it equips a user-friendly interface to fulfil the requirements of user-computer interaction in a real-time.","PeriodicalId":389183,"journal":{"name":"2017 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Pi-CEP: Predictive Complex Event Processing Using Range Queries over Historical Pattern Space\",\"authors\":\"Syed Gillani, A. Kammoun, K. Singh, Julien Subercaze, C. Gravier, J. Fayolle, F. Laforest\",\"doi\":\"10.1109/ICDMW.2017.167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predictive Complex Event Processing (CEP) constitutes the next phase of CEP evolution and provides future predictive states of the partially matched complex sequences. In this paper, we demonstrate our novel predictive CEP system and show that this problem can be solved while leveraging existing data modelling, query execution and optimisation frameworks. We model the predictive detection of events over an N-dimensional historical matched sequence space. Hence, a predictive set of events can be determined by answering the range queries over the historical sequence space. In order to take advantage of range search over 1-dimensional data structures, we transform the N-dimensional space into 1-dimension using space filling z-order curve. We propose a compressed index structure to store 1- dimensional data and execute customised range query techniques. Furthermore, we propose an approximate summarisation technique, over the historical space of top-k most infrequent range queries, to cater catastrophic forgetting of older matches. Two real-world datasets are used to demonstrate the feasibility of our proposed techniques. We demonstrate that our system can efficiently predict complex events and it equips a user-friendly interface to fulfil the requirements of user-computer interaction in a real-time.\",\"PeriodicalId\":389183,\"journal\":{\"name\":\"2017 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2017.167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2017.167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

预测复杂事件处理(CEP)是CEP发展的下一个阶段,它提供了部分匹配的复杂序列的未来预测状态。在本文中,我们展示了我们的新型预测CEP系统,并表明该问题可以通过利用现有的数据建模、查询执行和优化框架来解决。我们在n维历史匹配序列空间上对事件的预测检测建模。因此,可以通过回答历史序列空间上的范围查询来确定一组预测性事件。为了利用对一维数据结构的范围搜索,我们使用空间填充z阶曲线将n维空间转换为1维空间。我们提出了一种压缩索引结构来存储一维数据并执行自定义范围查询技术。此外,我们提出了一种近似总结技术,在前k个最不频繁的范围查询的历史空间中,以满足旧匹配的灾难性遗忘。两个真实世界的数据集被用来证明我们提出的技术的可行性。结果表明,该系统能够有效地预测复杂事件,并具有用户友好的界面,能够实时满足人机交互的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pi-CEP: Predictive Complex Event Processing Using Range Queries over Historical Pattern Space
Predictive Complex Event Processing (CEP) constitutes the next phase of CEP evolution and provides future predictive states of the partially matched complex sequences. In this paper, we demonstrate our novel predictive CEP system and show that this problem can be solved while leveraging existing data modelling, query execution and optimisation frameworks. We model the predictive detection of events over an N-dimensional historical matched sequence space. Hence, a predictive set of events can be determined by answering the range queries over the historical sequence space. In order to take advantage of range search over 1-dimensional data structures, we transform the N-dimensional space into 1-dimension using space filling z-order curve. We propose a compressed index structure to store 1- dimensional data and execute customised range query techniques. Furthermore, we propose an approximate summarisation technique, over the historical space of top-k most infrequent range queries, to cater catastrophic forgetting of older matches. Two real-world datasets are used to demonstrate the feasibility of our proposed techniques. We demonstrate that our system can efficiently predict complex events and it equips a user-friendly interface to fulfil the requirements of user-computer interaction in a real-time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信