N. Khoshavi, A. Roohi, Connor Broyles, S. Sargolzaei, Yu Bi, D. Pan
{"title":"用于容错深度神经网络架构的在线加速框架","authors":"N. Khoshavi, A. Roohi, Connor Broyles, S. Sargolzaei, Yu Bi, D. Pan","doi":"10.1109/DAC18072.2020.9218697","DOIUrl":null,"url":null,"abstract":"We propose SHIELDeNN, an end-to-end inference accelerator frame-work that synergizes the mitigation approach and computational resources to realize a low-overhead error-resilient Neural Network (NN) overlay. We develop a rigorous fault assessment paradigm to delineate a ground-truth fault-skeleton map for revealing the most vulnerable parameters in NN. The error-susceptible parameters and resource constraints are given to a function to find superior design. The error-resiliency magnitude offered by SHIELDeNN can be adjusted based on the given boundaries. SHIELDeNN methodology improves the error-resiliency magnitude of cnvW1A1 by 17.19% and 96.15% for 100 MBUs that target weight and activation layers, respectively.","PeriodicalId":428807,"journal":{"name":"2020 57th ACM/IEEE Design Automation Conference (DAC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"SHIELDeNN: Online Accelerated Framework for Fault-Tolerant Deep Neural Network Architectures\",\"authors\":\"N. Khoshavi, A. Roohi, Connor Broyles, S. Sargolzaei, Yu Bi, D. Pan\",\"doi\":\"10.1109/DAC18072.2020.9218697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose SHIELDeNN, an end-to-end inference accelerator frame-work that synergizes the mitigation approach and computational resources to realize a low-overhead error-resilient Neural Network (NN) overlay. We develop a rigorous fault assessment paradigm to delineate a ground-truth fault-skeleton map for revealing the most vulnerable parameters in NN. The error-susceptible parameters and resource constraints are given to a function to find superior design. The error-resiliency magnitude offered by SHIELDeNN can be adjusted based on the given boundaries. SHIELDeNN methodology improves the error-resiliency magnitude of cnvW1A1 by 17.19% and 96.15% for 100 MBUs that target weight and activation layers, respectively.\",\"PeriodicalId\":428807,\"journal\":{\"name\":\"2020 57th ACM/IEEE Design Automation Conference (DAC)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 57th ACM/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DAC18072.2020.9218697\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 57th ACM/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAC18072.2020.9218697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SHIELDeNN: Online Accelerated Framework for Fault-Tolerant Deep Neural Network Architectures
We propose SHIELDeNN, an end-to-end inference accelerator frame-work that synergizes the mitigation approach and computational resources to realize a low-overhead error-resilient Neural Network (NN) overlay. We develop a rigorous fault assessment paradigm to delineate a ground-truth fault-skeleton map for revealing the most vulnerable parameters in NN. The error-susceptible parameters and resource constraints are given to a function to find superior design. The error-resiliency magnitude offered by SHIELDeNN can be adjusted based on the given boundaries. SHIELDeNN methodology improves the error-resiliency magnitude of cnvW1A1 by 17.19% and 96.15% for 100 MBUs that target weight and activation layers, respectively.