基于混合条件模型的Web信息提取

Rong Li, Chun-qin Pei, Jia-heng Zheng
{"title":"基于混合条件模型的Web信息提取","authors":"Rong Li, Chun-qin Pei, Jia-heng Zheng","doi":"10.1109/ETCS.2010.207","DOIUrl":null,"url":null,"abstract":"The traditional Hidden Markov Model for web information extraction is sensitive to the initial model parameters and easy to lead to a sub-optimal model in practice. A hybrid conditional model to combine maximum entropy and maximum entropy Markov model is put forward for Web information extraction. With this approach, the input Web page is parsed to build an HTML tree, data regions are located in each HTML sub-tree node by estimating the entropy, which allows observations to be represented as arbitrary overlapping features (such as vocabulary, capitalization, HTML tags, and semantics), and defines the conditional probability of state sequences given to observation sequences for Web information extraction. Experimental results show that the new approach improves the performance in precision and recall over traditional hidden Markov model and maximum entropy Markov model.","PeriodicalId":193276,"journal":{"name":"2010 Second International Workshop on Education Technology and Computer Science","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Web Information Extraction Based on Hybrid Conditional Model\",\"authors\":\"Rong Li, Chun-qin Pei, Jia-heng Zheng\",\"doi\":\"10.1109/ETCS.2010.207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The traditional Hidden Markov Model for web information extraction is sensitive to the initial model parameters and easy to lead to a sub-optimal model in practice. A hybrid conditional model to combine maximum entropy and maximum entropy Markov model is put forward for Web information extraction. With this approach, the input Web page is parsed to build an HTML tree, data regions are located in each HTML sub-tree node by estimating the entropy, which allows observations to be represented as arbitrary overlapping features (such as vocabulary, capitalization, HTML tags, and semantics), and defines the conditional probability of state sequences given to observation sequences for Web information extraction. Experimental results show that the new approach improves the performance in precision and recall over traditional hidden Markov model and maximum entropy Markov model.\",\"PeriodicalId\":193276,\"journal\":{\"name\":\"2010 Second International Workshop on Education Technology and Computer Science\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Second International Workshop on Education Technology and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETCS.2010.207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Workshop on Education Technology and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETCS.2010.207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

传统的web信息提取隐马尔可夫模型对初始模型参数敏感,在实际应用中容易产生次优模型。提出了一种结合最大熵和最大熵马尔可夫模型的Web信息提取混合条件模型。使用这种方法,对输入Web页面进行解析以构建HTML树,通过估计熵来定位每个HTML子树节点中的数据区域,这允许将观察值表示为任意重叠的特征(如词汇表、大写、HTML标记和语义),并定义用于Web信息提取的观察序列的状态序列的条件概率。实验结果表明,与传统的隐马尔可夫模型和最大熵马尔可夫模型相比,该方法在查全率和查全率方面都有提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Web Information Extraction Based on Hybrid Conditional Model
The traditional Hidden Markov Model for web information extraction is sensitive to the initial model parameters and easy to lead to a sub-optimal model in practice. A hybrid conditional model to combine maximum entropy and maximum entropy Markov model is put forward for Web information extraction. With this approach, the input Web page is parsed to build an HTML tree, data regions are located in each HTML sub-tree node by estimating the entropy, which allows observations to be represented as arbitrary overlapping features (such as vocabulary, capitalization, HTML tags, and semantics), and defines the conditional probability of state sequences given to observation sequences for Web information extraction. Experimental results show that the new approach improves the performance in precision and recall over traditional hidden Markov model and maximum entropy Markov model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信