有限混合模型的多节点期望最大化算法

Sharon X. Lee, G. McLachlan, Kaleb L. Leemaqz
{"title":"有限混合模型的多节点期望最大化算法","authors":"Sharon X. Lee, G. McLachlan, Kaleb L. Leemaqz","doi":"10.1002/sam.11529","DOIUrl":null,"url":null,"abstract":"Finite mixture models are powerful tools for modeling and analyzing heterogeneous data. Parameter estimation is typically carried out using maximum likelihood estimation via the Expectation–Maximization (EM) algorithm. Recently, the adoption of flexible distributions as component densities has become increasingly popular. Often, the EM algorithm for these models involves complicated expressions that are time‐consuming to evaluate numerically. In this paper, we describe a parallel implementation of the EM algorithm suitable for both single‐threaded and multi‐threaded processors and for both single machine and multiple‐node systems. Numerical experiments are performed to demonstrate the potential performance gain in different settings. Comparison is also made across two commonly used platforms—R and MATLAB. For illustration, a fairly general mixture model is used in the comparison.","PeriodicalId":342679,"journal":{"name":"Statistical Analysis and Data Mining: The ASA Data Science Journal","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi‐node Expectation–Maximization algorithm for finite mixture models\",\"authors\":\"Sharon X. Lee, G. McLachlan, Kaleb L. Leemaqz\",\"doi\":\"10.1002/sam.11529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finite mixture models are powerful tools for modeling and analyzing heterogeneous data. Parameter estimation is typically carried out using maximum likelihood estimation via the Expectation–Maximization (EM) algorithm. Recently, the adoption of flexible distributions as component densities has become increasingly popular. Often, the EM algorithm for these models involves complicated expressions that are time‐consuming to evaluate numerically. In this paper, we describe a parallel implementation of the EM algorithm suitable for both single‐threaded and multi‐threaded processors and for both single machine and multiple‐node systems. Numerical experiments are performed to demonstrate the potential performance gain in different settings. Comparison is also made across two commonly used platforms—R and MATLAB. For illustration, a fairly general mixture model is used in the comparison.\",\"PeriodicalId\":342679,\"journal\":{\"name\":\"Statistical Analysis and Data Mining: The ASA Data Science Journal\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Analysis and Data Mining: The ASA Data Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/sam.11529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining: The ASA Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有限混合模型是建模和分析异构数据的有力工具。参数估计通常是通过期望最大化(EM)算法使用最大似然估计进行的。最近,采用灵活分布作为组件密度变得越来越流行。通常,这些模型的EM算法涉及复杂的表达式,需要花费大量时间进行数值计算。在本文中,我们描述了一种适用于单线程和多线程处理器以及单机和多节点系统的EM算法的并行实现。数值实验证明了在不同设置下的潜在性能增益。还比较了两种常用的平台——r和MATLAB。为了说明,比较中使用了一个相当一般的混合模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi‐node Expectation–Maximization algorithm for finite mixture models
Finite mixture models are powerful tools for modeling and analyzing heterogeneous data. Parameter estimation is typically carried out using maximum likelihood estimation via the Expectation–Maximization (EM) algorithm. Recently, the adoption of flexible distributions as component densities has become increasingly popular. Often, the EM algorithm for these models involves complicated expressions that are time‐consuming to evaluate numerically. In this paper, we describe a parallel implementation of the EM algorithm suitable for both single‐threaded and multi‐threaded processors and for both single machine and multiple‐node systems. Numerical experiments are performed to demonstrate the potential performance gain in different settings. Comparison is also made across two commonly used platforms—R and MATLAB. For illustration, a fairly general mixture model is used in the comparison.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信