基于集成学习的卷积神经网络特征融合框架在脑电图情感分类中的应用

K. Guo, Han Mei, Xiaona Xie, Xiangmin Xu
{"title":"基于集成学习的卷积神经网络特征融合框架在脑电图情感分类中的应用","authors":"K. Guo, Han Mei, Xiaona Xie, Xiangmin Xu","doi":"10.1109/IMBIOC.2019.8777738","DOIUrl":null,"url":null,"abstract":"In recent years, mental health has received more and more attention. With the development of artificial intelligence, machine learning has also been widely used in the field of mental health, e.g., emotion analysis. We propose a feature fusion framework based on convolutional neural network with correlation coefficient matrix and synchronization likelihood matrix of EEG signals for emotion analysis. To further improve the performance, we take the proposed fusion framework as a feature extractor, i.e., taking the output of the layer before softmax as feature, and use stacking strategy for ensemble learning. Experiments on the DEAP database show the effectiveness of the proposed method.","PeriodicalId":171472,"journal":{"name":"2019 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Convolutional Neural Network Feature Fusion Framework with Ensemble Learning for EEG-based Emotion Classification\",\"authors\":\"K. Guo, Han Mei, Xiaona Xie, Xiangmin Xu\",\"doi\":\"10.1109/IMBIOC.2019.8777738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, mental health has received more and more attention. With the development of artificial intelligence, machine learning has also been widely used in the field of mental health, e.g., emotion analysis. We propose a feature fusion framework based on convolutional neural network with correlation coefficient matrix and synchronization likelihood matrix of EEG signals for emotion analysis. To further improve the performance, we take the proposed fusion framework as a feature extractor, i.e., taking the output of the layer before softmax as feature, and use stacking strategy for ensemble learning. Experiments on the DEAP database show the effectiveness of the proposed method.\",\"PeriodicalId\":171472,\"journal\":{\"name\":\"2019 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMBIOC.2019.8777738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMBIOC.2019.8777738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

近年来,心理健康受到越来越多的关注。随着人工智能的发展,机器学习也被广泛应用于心理健康领域,如情绪分析。提出了一种基于卷积神经网络的脑电信号相关系数矩阵和同步似然矩阵特征融合框架,用于情绪分析。为了进一步提高性能,我们将所提出的融合框架作为特征提取器,即将softmax前一层的输出作为特征,并使用堆叠策略进行集成学习。在DEAP数据库上的实验表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Convolutional Neural Network Feature Fusion Framework with Ensemble Learning for EEG-based Emotion Classification
In recent years, mental health has received more and more attention. With the development of artificial intelligence, machine learning has also been widely used in the field of mental health, e.g., emotion analysis. We propose a feature fusion framework based on convolutional neural network with correlation coefficient matrix and synchronization likelihood matrix of EEG signals for emotion analysis. To further improve the performance, we take the proposed fusion framework as a feature extractor, i.e., taking the output of the layer before softmax as feature, and use stacking strategy for ensemble learning. Experiments on the DEAP database show the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信