用于入侵检测的自动编码器和AutoML

A. Glavan, V. Croitoru
{"title":"用于入侵检测的自动编码器和AutoML","authors":"A. Glavan, V. Croitoru","doi":"10.1109/ECAI58194.2023.10194229","DOIUrl":null,"url":null,"abstract":"Industrial internet of things and operational technology (IIoT/OT) lead the edge use case implementations. 5G and multi-access edge computing (MEC) offer the means to implement IIoT scenarios, ensuring business growth and deployment protection against network attacks. A variation of MEC and IIoT security measures are studied in the literature, and intrusion detection solutions are consequently proposed - including machine learning based solutions for anomaly detection. Automated machine learning (autoML) frameworks aim to create high accuracy models for users with little expertise in machine learning. This paper suggests autoencoders to improve autoML best model performance on a learning task: binary classification of network traffic. The experiment was performed on a benchmark dataset with intrusion detection examples: Network Security Laboratory - Knowledge Discovery in Databases (NSL-KDD). In order to optimize the learning process, autoencoders are suggested for feature encoding. The approach presented in this paper achieves a 4% increase in model accuracy and lower training time, when compared to the AutoML baseline model.","PeriodicalId":391483,"journal":{"name":"2023 15th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Autoencoders and AutoML for intrusion detection\",\"authors\":\"A. Glavan, V. Croitoru\",\"doi\":\"10.1109/ECAI58194.2023.10194229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Industrial internet of things and operational technology (IIoT/OT) lead the edge use case implementations. 5G and multi-access edge computing (MEC) offer the means to implement IIoT scenarios, ensuring business growth and deployment protection against network attacks. A variation of MEC and IIoT security measures are studied in the literature, and intrusion detection solutions are consequently proposed - including machine learning based solutions for anomaly detection. Automated machine learning (autoML) frameworks aim to create high accuracy models for users with little expertise in machine learning. This paper suggests autoencoders to improve autoML best model performance on a learning task: binary classification of network traffic. The experiment was performed on a benchmark dataset with intrusion detection examples: Network Security Laboratory - Knowledge Discovery in Databases (NSL-KDD). In order to optimize the learning process, autoencoders are suggested for feature encoding. The approach presented in this paper achieves a 4% increase in model accuracy and lower training time, when compared to the AutoML baseline model.\",\"PeriodicalId\":391483,\"journal\":{\"name\":\"2023 15th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 15th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECAI58194.2023.10194229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 15th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECAI58194.2023.10194229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

工业物联网和运营技术(IIoT/OT)引领着边缘用例的实现。5G和多接入边缘计算(MEC)提供了实现工业物联网场景的手段,确保业务增长和部署保护免受网络攻击。文献中研究了MEC和IIoT安全措施的变化,并因此提出了入侵检测解决方案-包括基于机器学习的异常检测解决方案。自动化机器学习(autoML)框架旨在为缺乏机器学习专业知识的用户创建高精度模型。本文建议使用自编码器来提高autoML在网络流量二进制分类学习任务上的最佳模型性能。实验是在一个带有入侵检测示例的基准数据集上进行的:网络安全实验室-数据库中的知识发现(NSL-KDD)。为了优化学习过程,建议采用自编码器进行特征编码。与AutoML基线模型相比,本文提出的方法使模型精度提高了4%,并且减少了训练时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Autoencoders and AutoML for intrusion detection
Industrial internet of things and operational technology (IIoT/OT) lead the edge use case implementations. 5G and multi-access edge computing (MEC) offer the means to implement IIoT scenarios, ensuring business growth and deployment protection against network attacks. A variation of MEC and IIoT security measures are studied in the literature, and intrusion detection solutions are consequently proposed - including machine learning based solutions for anomaly detection. Automated machine learning (autoML) frameworks aim to create high accuracy models for users with little expertise in machine learning. This paper suggests autoencoders to improve autoML best model performance on a learning task: binary classification of network traffic. The experiment was performed on a benchmark dataset with intrusion detection examples: Network Security Laboratory - Knowledge Discovery in Databases (NSL-KDD). In order to optimize the learning process, autoencoders are suggested for feature encoding. The approach presented in this paper achieves a 4% increase in model accuracy and lower training time, when compared to the AutoML baseline model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信