{"title":"不同的数据流","authors":"S. Chawathe","doi":"10.1109/IDEAS.2005.21","DOIUrl":null,"url":null,"abstract":"We present external-memory algorithms for differencing large hierarchical datasets. Our methods are especially suited to streaming data with bounded differences. For input sizes m and n and maximum output (difference) size e, the I/O, RAM, and CPU costs of our algorithm rdiff are, respectively, m + n, 4e + 8, and O(MN). That is, given 4e + 8 blocks of RAM, our algorithm performs no I/O operations other than those required to read both inputs. We also present a variant of the algorithm that uses only four blocks of RAM, with I/O cost 8me + 18m + n + 6e + 5 and CPU cost O(MN).","PeriodicalId":357591,"journal":{"name":"9th International Database Engineering & Application Symposium (IDEAS'05)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Differencing data streams\",\"authors\":\"S. Chawathe\",\"doi\":\"10.1109/IDEAS.2005.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present external-memory algorithms for differencing large hierarchical datasets. Our methods are especially suited to streaming data with bounded differences. For input sizes m and n and maximum output (difference) size e, the I/O, RAM, and CPU costs of our algorithm rdiff are, respectively, m + n, 4e + 8, and O(MN). That is, given 4e + 8 blocks of RAM, our algorithm performs no I/O operations other than those required to read both inputs. We also present a variant of the algorithm that uses only four blocks of RAM, with I/O cost 8me + 18m + n + 6e + 5 and CPU cost O(MN).\",\"PeriodicalId\":357591,\"journal\":{\"name\":\"9th International Database Engineering & Application Symposium (IDEAS'05)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"9th International Database Engineering & Application Symposium (IDEAS'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IDEAS.2005.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"9th International Database Engineering & Application Symposium (IDEAS'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDEAS.2005.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
摘要
我们提出了用于区分大型分层数据集的外部存储器算法。我们的方法特别适合具有有限差异的流数据。对于输入大小m和n以及最大输出(差异)大小e,我们的算法rdiff的I/O、RAM和CPU成本分别为m + n、4e + 8和O(MN)。也就是说,给定4e + 8块RAM,我们的算法除了读取两个输入所需的操作外,不执行任何I/O操作。我们还提出了该算法的一种变体,它只使用4块RAM, I/O成本为8me + 18m + n + 6e + 5, CPU成本为O(MN)。
We present external-memory algorithms for differencing large hierarchical datasets. Our methods are especially suited to streaming data with bounded differences. For input sizes m and n and maximum output (difference) size e, the I/O, RAM, and CPU costs of our algorithm rdiff are, respectively, m + n, 4e + 8, and O(MN). That is, given 4e + 8 blocks of RAM, our algorithm performs no I/O operations other than those required to read both inputs. We also present a variant of the algorithm that uses only four blocks of RAM, with I/O cost 8me + 18m + n + 6e + 5 and CPU cost O(MN).