线性方程模2与凸体的L1直径

Subhash Khot, A. Naor
{"title":"线性方程模2与凸体的L1直径","authors":"Subhash Khot, A. Naor","doi":"10.1109/focs.2007.4389503","DOIUrl":null,"url":null,"abstract":"We design a randomized polynomial time algorithm which, given a 3-tensor of real numbers A={a<sub>ijk</sub>}<sub>ij,k=1</sub> <sup>n</sup> such that for all i,j,kisin{1,...,n} we have a<sub>ijk</sub>=a<sub>ikj</sub>=a<sub>kji</sub>=a<sub>jik</sub>=a<sub>kij</sub>=a<sub>kji</sub> and a<sub>iik</sub>=a<sub>ijj</sub>=a<sub>iji</sub>=0, computes a number Alg(A) which satisfies with probability at least 1/2, Omega(radic(logn/n))ldrmax<sub>xisin{-1,1}</sub> <sup>n</sup> Sigma<sub>i,j,k=1</sub> <sup>n</sup>a<sub>ijk</sub>x<sub>i</sub>x<sub>j</sub>x<sub>k</sub>lesAlg(A)lesmax<sub>xisin{-1,1}</sub> <sup>n</sup> Sigma<sub>i,j,k=1</sub> <sup>n</sup>a<sub>ijk</sub>x<sub>i</sub>x<sub>j</sub>x<sub>k</sub>. On the other hand, we show via a simple reduction from a result of Hastad and Venkatesh that under the assumption NPnsubeDTIME(n<sup>(logn)</sup> <sup>O(1)</sup>),for every epsiv>0 there is no algorithm that approximates max<sub>xisin{-1,1}</sub> <sup>n</sup> Sigma<sub>i,j,k=1</sub> <sup>n</sup>a<sub>ijk</sub>x<sub>i</sub>x<sub>j</sub>x<sub>k</sub> within a factor of 2(logn)<sup>t-epsiv</sup> in time 2<sup>(logn)</sup> <sup>O(1)</sup>. Our algorithm is based on a reduction to the problem of computing the diameter of a convex body in R<sup>n</sup> with respect to the L<sub>1</sub> norm. We show that it is possible to do so up to a multiplicative error of O(radic(n/logn)), while no randomized polynomial time algorithm can achieve accuracy O(radic(n/logn)). This resolves a question posed by Brieden, Gritzmann, Kantian, Klee, Lovasz and Simonos. We apply our new algorithm improve the algorithm of Hastad and Venkatesh or the Max-E3-Lin-2 problem. Given an over-determined system epsiv of N linear equations modulo 2 in nlesN Boolean variables, such that in each equation appear only three distinct variables, the goal is to approximate in polynomial time the maximum number of satisfiable equations in epsiv minus N/2 (i.e. we subtract the expected number of satisfied equations in a random assignment). Hastad and Venkatesh obtained an algorithm which approximates this value up to a factor of O(radicN). We obtain a O(radic(n/logn)) approximation algorithm. By relating this problem to the refutation problem for random 3-CNF formulas we give evidence that obtaining a significant improvement over this approximation factor is likely to be difficult.","PeriodicalId":197431,"journal":{"name":"48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Linear Equations Modulo 2 and the L1 Diameter of Convex Bodies\",\"authors\":\"Subhash Khot, A. Naor\",\"doi\":\"10.1109/focs.2007.4389503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We design a randomized polynomial time algorithm which, given a 3-tensor of real numbers A={a<sub>ijk</sub>}<sub>ij,k=1</sub> <sup>n</sup> such that for all i,j,kisin{1,...,n} we have a<sub>ijk</sub>=a<sub>ikj</sub>=a<sub>kji</sub>=a<sub>jik</sub>=a<sub>kij</sub>=a<sub>kji</sub> and a<sub>iik</sub>=a<sub>ijj</sub>=a<sub>iji</sub>=0, computes a number Alg(A) which satisfies with probability at least 1/2, Omega(radic(logn/n))ldrmax<sub>xisin{-1,1}</sub> <sup>n</sup> Sigma<sub>i,j,k=1</sub> <sup>n</sup>a<sub>ijk</sub>x<sub>i</sub>x<sub>j</sub>x<sub>k</sub>lesAlg(A)lesmax<sub>xisin{-1,1}</sub> <sup>n</sup> Sigma<sub>i,j,k=1</sub> <sup>n</sup>a<sub>ijk</sub>x<sub>i</sub>x<sub>j</sub>x<sub>k</sub>. On the other hand, we show via a simple reduction from a result of Hastad and Venkatesh that under the assumption NPnsubeDTIME(n<sup>(logn)</sup> <sup>O(1)</sup>),for every epsiv>0 there is no algorithm that approximates max<sub>xisin{-1,1}</sub> <sup>n</sup> Sigma<sub>i,j,k=1</sub> <sup>n</sup>a<sub>ijk</sub>x<sub>i</sub>x<sub>j</sub>x<sub>k</sub> within a factor of 2(logn)<sup>t-epsiv</sup> in time 2<sup>(logn)</sup> <sup>O(1)</sup>. Our algorithm is based on a reduction to the problem of computing the diameter of a convex body in R<sup>n</sup> with respect to the L<sub>1</sub> norm. We show that it is possible to do so up to a multiplicative error of O(radic(n/logn)), while no randomized polynomial time algorithm can achieve accuracy O(radic(n/logn)). This resolves a question posed by Brieden, Gritzmann, Kantian, Klee, Lovasz and Simonos. We apply our new algorithm improve the algorithm of Hastad and Venkatesh or the Max-E3-Lin-2 problem. Given an over-determined system epsiv of N linear equations modulo 2 in nlesN Boolean variables, such that in each equation appear only three distinct variables, the goal is to approximate in polynomial time the maximum number of satisfiable equations in epsiv minus N/2 (i.e. we subtract the expected number of satisfied equations in a random assignment). Hastad and Venkatesh obtained an algorithm which approximates this value up to a factor of O(radicN). We obtain a O(radic(n/logn)) approximation algorithm. By relating this problem to the refutation problem for random 3-CNF formulas we give evidence that obtaining a significant improvement over this approximation factor is likely to be difficult.\",\"PeriodicalId\":197431,\"journal\":{\"name\":\"48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/focs.2007.4389503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/focs.2007.4389503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

我们设计了一个随机多项式时间算法,给定实数的3张量a ={aijk}ij,k=1 n,使得对于所有i,j,kisin{1,…,n}我们有aijk=aikj=akji=ajik=akij=akji和aiik=aijj=aiji= akji,计算一个数Alg(a)它满足概率至少为1/2,Omega(radic(logn/n))ldrmaxxisin{-1,1} n Sigmai,j,k=1 naijkxixjkklesalg (a)lesmaxxisin{-1,1} n Sigmai,j,k=1 naijkxixjxxjxk。另一方面,我们通过对Hastad和Venkatesh的结果的简单简化表明,在假设NPnsubeDTIME(n(logn) O(1))下,对于每个epsiv>0,没有算法可以在2(logn) O(1)时间内在2(logn)t-epsiv的因子内逼近maxxisin{-1,1} n Sigmai,j,k=1 naijkxixjxk。我们的算法是基于一个简化的问题,计算一个凸体的直径在Rn相对于L1范数。我们证明,它可以达到O(radic(n/logn))的乘法误差,而没有随机多项式时间算法可以达到O(radic(n/logn))的精度。这就解决了布里登、格里茨曼、康德、克利、洛瓦兹和西蒙诺斯提出的一个问题。我们应用我们的新算法改进了haad和Venkatesh的算法或Max-E3-Lin-2问题。给定一个过度确定的系统epsiv (N个线性方程,在nlesN布尔变量中取模2),使得在每个方程中只出现三个不同的变量,目标是在多项式时间内近似epsiv - N/2中可满足方程的最大数量(即我们减去随机分配中预期的满足方程的数量)。Hastad和Venkatesh得到了一种算法,该算法将该值逼近到0 (radicN)的因数。我们得到了一个O(radic(n/logn))近似算法。通过将这个问题与随机3-CNF公式的反驳问题联系起来,我们给出了证据,证明在这个近似因子上获得显着改进可能是困难的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear Equations Modulo 2 and the L1 Diameter of Convex Bodies
We design a randomized polynomial time algorithm which, given a 3-tensor of real numbers A={aijk}ij,k=1 n such that for all i,j,kisin{1,...,n} we have aijk=aikj=akji=ajik=akij=akji and aiik=aijj=aiji=0, computes a number Alg(A) which satisfies with probability at least 1/2, Omega(radic(logn/n))ldrmaxxisin{-1,1} n Sigmai,j,k=1 naijkxixjxklesAlg(A)lesmaxxisin{-1,1} n Sigmai,j,k=1 naijkxixjxk. On the other hand, we show via a simple reduction from a result of Hastad and Venkatesh that under the assumption NPnsubeDTIME(n(logn) O(1)),for every epsiv>0 there is no algorithm that approximates maxxisin{-1,1} n Sigmai,j,k=1 naijkxixjxk within a factor of 2(logn)t-epsiv in time 2(logn) O(1). Our algorithm is based on a reduction to the problem of computing the diameter of a convex body in Rn with respect to the L1 norm. We show that it is possible to do so up to a multiplicative error of O(radic(n/logn)), while no randomized polynomial time algorithm can achieve accuracy O(radic(n/logn)). This resolves a question posed by Brieden, Gritzmann, Kantian, Klee, Lovasz and Simonos. We apply our new algorithm improve the algorithm of Hastad and Venkatesh or the Max-E3-Lin-2 problem. Given an over-determined system epsiv of N linear equations modulo 2 in nlesN Boolean variables, such that in each equation appear only three distinct variables, the goal is to approximate in polynomial time the maximum number of satisfiable equations in epsiv minus N/2 (i.e. we subtract the expected number of satisfied equations in a random assignment). Hastad and Venkatesh obtained an algorithm which approximates this value up to a factor of O(radicN). We obtain a O(radic(n/logn)) approximation algorithm. By relating this problem to the refutation problem for random 3-CNF formulas we give evidence that obtaining a significant improvement over this approximation factor is likely to be difficult.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信