金融应用中能源效率的动态记忆

G. Agosta, Marco Bessi, E. Capra, C. Francalanci
{"title":"金融应用中能源效率的动态记忆","authors":"G. Agosta, Marco Bessi, E. Capra, C. Francalanci","doi":"10.1109/IGCC.2011.6008559","DOIUrl":null,"url":null,"abstract":"Software applications directly impact on IT energy consumptions as they indirectly guide hardware operations. Optimizing algorithms has a direct beneficial impact on energy efficiency, but it requires domain knowledge and an accurate analysis of the code, which may be infeasible and too costly to perform for large code bases. In this paper we present an approach based on dynamic memoization to increase software energy efficiency. This implies to identify a subset of pure functions that can be tabulated and to automatically store the results corresponding to the most frequent invocations. We implemented a prototype software system to apply memoization and tested it on a set of financial functions. Empirical results show average energy savings of 74% and time performance savings of 79%.","PeriodicalId":306876,"journal":{"name":"2011 International Green Computing Conference and Workshops","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Dynamic memoization for energy efficiency in financial applications\",\"authors\":\"G. Agosta, Marco Bessi, E. Capra, C. Francalanci\",\"doi\":\"10.1109/IGCC.2011.6008559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software applications directly impact on IT energy consumptions as they indirectly guide hardware operations. Optimizing algorithms has a direct beneficial impact on energy efficiency, but it requires domain knowledge and an accurate analysis of the code, which may be infeasible and too costly to perform for large code bases. In this paper we present an approach based on dynamic memoization to increase software energy efficiency. This implies to identify a subset of pure functions that can be tabulated and to automatically store the results corresponding to the most frequent invocations. We implemented a prototype software system to apply memoization and tested it on a set of financial functions. Empirical results show average energy savings of 74% and time performance savings of 79%.\",\"PeriodicalId\":306876,\"journal\":{\"name\":\"2011 International Green Computing Conference and Workshops\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Green Computing Conference and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGCC.2011.6008559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Green Computing Conference and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGCC.2011.6008559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

软件应用程序直接影响IT能源消耗,因为它们间接指导硬件操作。优化算法对能源效率有直接的有益影响,但它需要领域知识和对代码的准确分析,这对于大型代码库来说可能是不可行的,而且成本太高。在本文中,我们提出了一种基于动态记忆的方法来提高软件的能效。这意味着要确定一个纯函数的子集,这些函数可以被制表,并自动存储与最频繁调用相对应的结果。我们实现了一个应用记忆的原型软件系统,并在一组财务功能上进行了测试。实证结果显示,平均节能74%,时间性能节省79%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic memoization for energy efficiency in financial applications
Software applications directly impact on IT energy consumptions as they indirectly guide hardware operations. Optimizing algorithms has a direct beneficial impact on energy efficiency, but it requires domain knowledge and an accurate analysis of the code, which may be infeasible and too costly to perform for large code bases. In this paper we present an approach based on dynamic memoization to increase software energy efficiency. This implies to identify a subset of pure functions that can be tabulated and to automatically store the results corresponding to the most frequent invocations. We implemented a prototype software system to apply memoization and tested it on a set of financial functions. Empirical results show average energy savings of 74% and time performance savings of 79%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信