有限元分析中一种有效的列主排序格式

Jin Tian, F. Gao, Xiankun Sun, Li Gong
{"title":"有限元分析中一种有效的列主排序格式","authors":"Jin Tian, F. Gao, Xiankun Sun, Li Gong","doi":"10.1109/CSO.2014.110","DOIUrl":null,"url":null,"abstract":"A new column-major ordering format called sliced EET is proposed to accelerate FEM analysis. The sliced EET is designed for hastening many addition and dot product steps of Sparse Matrix Vector Product (SMVP) operations in iterative calculation of finite element equations. The new implementation of SMVP on GPUs is compared with other column-major ordering formats. The proposed strategy executed on a GPU can efficiently solve sparse finite element equations.","PeriodicalId":174800,"journal":{"name":"2014 Seventh International Joint Conference on Computational Sciences and Optimization","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Column-Major Ordering Format for Finite Element Analysis\",\"authors\":\"Jin Tian, F. Gao, Xiankun Sun, Li Gong\",\"doi\":\"10.1109/CSO.2014.110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new column-major ordering format called sliced EET is proposed to accelerate FEM analysis. The sliced EET is designed for hastening many addition and dot product steps of Sparse Matrix Vector Product (SMVP) operations in iterative calculation of finite element equations. The new implementation of SMVP on GPUs is compared with other column-major ordering formats. The proposed strategy executed on a GPU can efficiently solve sparse finite element equations.\",\"PeriodicalId\":174800,\"journal\":{\"name\":\"2014 Seventh International Joint Conference on Computational Sciences and Optimization\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Seventh International Joint Conference on Computational Sciences and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSO.2014.110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Seventh International Joint Conference on Computational Sciences and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSO.2014.110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高有限元分析的速度,提出了一种新的列主排序格式-切片EET。为了加快有限元方程迭代计算中稀疏矩阵向量积(SMVP)运算的加法和点积步骤,设计了切片EET。将SMVP在gpu上的新实现与其他列主排序格式进行了比较。在GPU上执行该策略可以有效地求解稀疏有限元方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Column-Major Ordering Format for Finite Element Analysis
A new column-major ordering format called sliced EET is proposed to accelerate FEM analysis. The sliced EET is designed for hastening many addition and dot product steps of Sparse Matrix Vector Product (SMVP) operations in iterative calculation of finite element equations. The new implementation of SMVP on GPUs is compared with other column-major ordering formats. The proposed strategy executed on a GPU can efficiently solve sparse finite element equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信