基于异构节点权重的改进Mean Shift算法

J. Yoon, Simon P. Wilson
{"title":"基于异构节点权重的改进Mean Shift算法","authors":"J. Yoon, Simon P. Wilson","doi":"10.1109/ICPR.2010.1026","DOIUrl":null,"url":null,"abstract":"The conventional mean shift algorithm has been known to be sensitive to selecting a bandwidth. We present a robust mean shift algorithm with heterogeneous node weights that come from a geometric structure of a given data set. Before running MS procedure, we reconstruct un-normalized weights (a rough surface of data points) from the Delaunay Triangulation. The un-normalized weights help MS to avoid the problem of failing of misled mean shift vectors. As a result, we can obtain a more robust clustering result compared to the conventional mean shift algorithm. We also propose an alternative way to assign weights for large size datasets and noisy datasets.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improved Mean Shift Algorithm with Heterogeneous Node Weights\",\"authors\":\"J. Yoon, Simon P. Wilson\",\"doi\":\"10.1109/ICPR.2010.1026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The conventional mean shift algorithm has been known to be sensitive to selecting a bandwidth. We present a robust mean shift algorithm with heterogeneous node weights that come from a geometric structure of a given data set. Before running MS procedure, we reconstruct un-normalized weights (a rough surface of data points) from the Delaunay Triangulation. The un-normalized weights help MS to avoid the problem of failing of misled mean shift vectors. As a result, we can obtain a more robust clustering result compared to the conventional mean shift algorithm. We also propose an alternative way to assign weights for large size datasets and noisy datasets.\",\"PeriodicalId\":309591,\"journal\":{\"name\":\"2010 20th International Conference on Pattern Recognition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 20th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2010.1026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.1026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

传统的均值移位算法对带宽的选择非常敏感。我们提出了一种鲁棒的均值移位算法,该算法具有来自给定数据集的几何结构的异构节点权重。在运行MS程序之前,我们从Delaunay三角剖分中重建非归一化权重(数据点的粗糙表面)。非归一化的权值帮助MS避免了被误导的均值移向量失败的问题。因此,与传统的均值移位算法相比,我们可以获得更鲁棒的聚类结果。我们还提出了一种为大型数据集和噪声数据集分配权重的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Mean Shift Algorithm with Heterogeneous Node Weights
The conventional mean shift algorithm has been known to be sensitive to selecting a bandwidth. We present a robust mean shift algorithm with heterogeneous node weights that come from a geometric structure of a given data set. Before running MS procedure, we reconstruct un-normalized weights (a rough surface of data points) from the Delaunay Triangulation. The un-normalized weights help MS to avoid the problem of failing of misled mean shift vectors. As a result, we can obtain a more robust clustering result compared to the conventional mean shift algorithm. We also propose an alternative way to assign weights for large size datasets and noisy datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信