{"title":"基于异构节点权重的改进Mean Shift算法","authors":"J. Yoon, Simon P. Wilson","doi":"10.1109/ICPR.2010.1026","DOIUrl":null,"url":null,"abstract":"The conventional mean shift algorithm has been known to be sensitive to selecting a bandwidth. We present a robust mean shift algorithm with heterogeneous node weights that come from a geometric structure of a given data set. Before running MS procedure, we reconstruct un-normalized weights (a rough surface of data points) from the Delaunay Triangulation. The un-normalized weights help MS to avoid the problem of failing of misled mean shift vectors. As a result, we can obtain a more robust clustering result compared to the conventional mean shift algorithm. We also propose an alternative way to assign weights for large size datasets and noisy datasets.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improved Mean Shift Algorithm with Heterogeneous Node Weights\",\"authors\":\"J. Yoon, Simon P. Wilson\",\"doi\":\"10.1109/ICPR.2010.1026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The conventional mean shift algorithm has been known to be sensitive to selecting a bandwidth. We present a robust mean shift algorithm with heterogeneous node weights that come from a geometric structure of a given data set. Before running MS procedure, we reconstruct un-normalized weights (a rough surface of data points) from the Delaunay Triangulation. The un-normalized weights help MS to avoid the problem of failing of misled mean shift vectors. As a result, we can obtain a more robust clustering result compared to the conventional mean shift algorithm. We also propose an alternative way to assign weights for large size datasets and noisy datasets.\",\"PeriodicalId\":309591,\"journal\":{\"name\":\"2010 20th International Conference on Pattern Recognition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 20th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2010.1026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.1026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improved Mean Shift Algorithm with Heterogeneous Node Weights
The conventional mean shift algorithm has been known to be sensitive to selecting a bandwidth. We present a robust mean shift algorithm with heterogeneous node weights that come from a geometric structure of a given data set. Before running MS procedure, we reconstruct un-normalized weights (a rough surface of data points) from the Delaunay Triangulation. The un-normalized weights help MS to avoid the problem of failing of misled mean shift vectors. As a result, we can obtain a more robust clustering result compared to the conventional mean shift algorithm. We also propose an alternative way to assign weights for large size datasets and noisy datasets.