无线窃听信道保密能力最大化:一种神经动力学优化方法

Hongyan Yu, Bao-liang Zhang, Tong Wang, Jun Wang
{"title":"无线窃听信道保密能力最大化:一种神经动力学优化方法","authors":"Hongyan Yu, Bao-liang Zhang, Tong Wang, Jun Wang","doi":"10.1109/ICACI52617.2021.9435916","DOIUrl":null,"url":null,"abstract":"This paper addresses the secure transmission problem of privacy information over a fading channel with an eavesdropper. A neural network model is proposed for solving the secrecy capacity maximization problems in real time. Unlike conventional power allocation strategies, a neurodynamic secure transmission approach is provided by the relation between KKT (Karush-Kuhn-Tucker) optimality conditions and the equilibrium point of a neural network. The transient behaviour of neural networks are showed, and the effectiveness of the neurodynamic approach is substantiated with a secrecy capacity maximization problem.","PeriodicalId":382483,"journal":{"name":"2021 13th International Conference on Advanced Computational Intelligence (ICACI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Secrecy Capacity Maximization in Wireless Wiretap Channel: A Neurodynamic Optimization Approach\",\"authors\":\"Hongyan Yu, Bao-liang Zhang, Tong Wang, Jun Wang\",\"doi\":\"10.1109/ICACI52617.2021.9435916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the secure transmission problem of privacy information over a fading channel with an eavesdropper. A neural network model is proposed for solving the secrecy capacity maximization problems in real time. Unlike conventional power allocation strategies, a neurodynamic secure transmission approach is provided by the relation between KKT (Karush-Kuhn-Tucker) optimality conditions and the equilibrium point of a neural network. The transient behaviour of neural networks are showed, and the effectiveness of the neurodynamic approach is substantiated with a secrecy capacity maximization problem.\",\"PeriodicalId\":382483,\"journal\":{\"name\":\"2021 13th International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 13th International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACI52617.2021.9435916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI52617.2021.9435916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了带窃听器的衰落信道上隐私信息的安全传输问题。提出了一种实时求解保密能力最大化问题的神经网络模型。与传统的功率分配策略不同,神经动态安全传输方法是由KKT (Karush-Kuhn-Tucker)最优性条件与神经网络平衡点之间的关系提供的。研究了神经网络的瞬态行为,并通过一个保密能力最大化问题验证了神经动力学方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Secrecy Capacity Maximization in Wireless Wiretap Channel: A Neurodynamic Optimization Approach
This paper addresses the secure transmission problem of privacy information over a fading channel with an eavesdropper. A neural network model is proposed for solving the secrecy capacity maximization problems in real time. Unlike conventional power allocation strategies, a neurodynamic secure transmission approach is provided by the relation between KKT (Karush-Kuhn-Tucker) optimality conditions and the equilibrium point of a neural network. The transient behaviour of neural networks are showed, and the effectiveness of the neurodynamic approach is substantiated with a secrecy capacity maximization problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信