基于投票技术的跨文档关系多文档摘要

Y. J. Kumar, N. Salim, Albaraa Abuobieda, A. Tawfik
{"title":"基于投票技术的跨文档关系多文档摘要","authors":"Y. J. Kumar, N. Salim, Albaraa Abuobieda, A. Tawfik","doi":"10.1109/ICCEEE.2013.6634009","DOIUrl":null,"url":null,"abstract":"News articles which are available through online search often provide readers with large collection of texts. Especially in the case of news story, different news sources reporting on the same event usually returns multiple articles in response to a reader's search. In this work, we first identify cross-document relations from un-annotated texts using Genetic-CBR approach. Following that, we develop a new sentence scoring model based on voting technique over the identified cross-document relations. Our experiments show that incorporating the proposed methods in the summarization process yields substantial improvement over the mainstream methods. The performances of all methods were evaluated using ROUGE - a standard evaluation metric used in text summarization.","PeriodicalId":256793,"journal":{"name":"2013 INTERNATIONAL CONFERENCE ON COMPUTING, ELECTRICAL AND ELECTRONIC ENGINEERING (ICCEEE)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Multi document summarization based on cross-document relation using voting technique\",\"authors\":\"Y. J. Kumar, N. Salim, Albaraa Abuobieda, A. Tawfik\",\"doi\":\"10.1109/ICCEEE.2013.6634009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"News articles which are available through online search often provide readers with large collection of texts. Especially in the case of news story, different news sources reporting on the same event usually returns multiple articles in response to a reader's search. In this work, we first identify cross-document relations from un-annotated texts using Genetic-CBR approach. Following that, we develop a new sentence scoring model based on voting technique over the identified cross-document relations. Our experiments show that incorporating the proposed methods in the summarization process yields substantial improvement over the mainstream methods. The performances of all methods were evaluated using ROUGE - a standard evaluation metric used in text summarization.\",\"PeriodicalId\":256793,\"journal\":{\"name\":\"2013 INTERNATIONAL CONFERENCE ON COMPUTING, ELECTRICAL AND ELECTRONIC ENGINEERING (ICCEEE)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 INTERNATIONAL CONFERENCE ON COMPUTING, ELECTRICAL AND ELECTRONIC ENGINEERING (ICCEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCEEE.2013.6634009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 INTERNATIONAL CONFERENCE ON COMPUTING, ELECTRICAL AND ELECTRONIC ENGINEERING (ICCEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEEE.2013.6634009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

通过在线搜索获得的新闻文章通常为读者提供大量的文本集合。特别是在新闻报道的情况下,不同的新闻来源报道同一事件,通常会根据读者的搜索返回多篇文章。在这项工作中,我们首先使用Genetic-CBR方法从未注释的文本中识别跨文档关系。在此基础上,我们开发了一个基于投票技术的句子评分模型。我们的实验表明,在摘要过程中纳入所提出的方法比主流方法产生了实质性的改进。使用ROUGE(一种用于文本摘要的标准评价指标)对所有方法的性能进行评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi document summarization based on cross-document relation using voting technique
News articles which are available through online search often provide readers with large collection of texts. Especially in the case of news story, different news sources reporting on the same event usually returns multiple articles in response to a reader's search. In this work, we first identify cross-document relations from un-annotated texts using Genetic-CBR approach. Following that, we develop a new sentence scoring model based on voting technique over the identified cross-document relations. Our experiments show that incorporating the proposed methods in the summarization process yields substantial improvement over the mainstream methods. The performances of all methods were evaluated using ROUGE - a standard evaluation metric used in text summarization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信