利用机器学习模型估算泰国干常绿森林的生物量

Kamthorn Puntumapon, Aitsanart Wuthithanakul, Pedro Uria Recio, B. Vindevogel
{"title":"利用机器学习模型估算泰国干常绿森林的生物量","authors":"Kamthorn Puntumapon, Aitsanart Wuthithanakul, Pedro Uria Recio, B. Vindevogel","doi":"10.1109/KST57286.2023.10086748","DOIUrl":null,"url":null,"abstract":"Above ground biomass (AGB) is the key measurement for carbon credit. To quantify AGB over large forests, it is essential to develop a method that can handle the growing forest area. In this study, we investigate the possibility of estimating AGB using satellite data and machine-learning models. Several machine learning models, linear, non-linear, and ensemble methods, are evaluated. Random forest algorithm achieved the best model performance. On validation data, the random forest model can predict AGB with 24.5 Mg per area in terms of RMSE. The results demonstrate that satellite data from Sentinel-1, Sentinel-2, and MODIS have the potential to predict AGB in Thai dry-evergreen forests.","PeriodicalId":351833,"journal":{"name":"2023 15th International Conference on Knowledge and Smart Technology (KST)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thai Dry-Evergreen Forest’s Biomass Estimation using Machine Learning Models\",\"authors\":\"Kamthorn Puntumapon, Aitsanart Wuthithanakul, Pedro Uria Recio, B. Vindevogel\",\"doi\":\"10.1109/KST57286.2023.10086748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Above ground biomass (AGB) is the key measurement for carbon credit. To quantify AGB over large forests, it is essential to develop a method that can handle the growing forest area. In this study, we investigate the possibility of estimating AGB using satellite data and machine-learning models. Several machine learning models, linear, non-linear, and ensemble methods, are evaluated. Random forest algorithm achieved the best model performance. On validation data, the random forest model can predict AGB with 24.5 Mg per area in terms of RMSE. The results demonstrate that satellite data from Sentinel-1, Sentinel-2, and MODIS have the potential to predict AGB in Thai dry-evergreen forests.\",\"PeriodicalId\":351833,\"journal\":{\"name\":\"2023 15th International Conference on Knowledge and Smart Technology (KST)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 15th International Conference on Knowledge and Smart Technology (KST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KST57286.2023.10086748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 15th International Conference on Knowledge and Smart Technology (KST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KST57286.2023.10086748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

地上生物量(AGB)是衡量碳信用的关键指标。为了量化大型森林的AGB,必须开发一种能够处理生长森林面积的方法。在本研究中,我们探讨了使用卫星数据和机器学习模型估计AGB的可能性。评估了几种机器学习模型,线性,非线性和集成方法。随机森林算法获得了最佳的模型性能。在验证数据上,随机森林模型预测AGB的RMSE值为24.5 Mg / area。结果表明,Sentinel-1、Sentinel-2和MODIS卫星数据具有预测泰国干旱常绿森林AGB的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thai Dry-Evergreen Forest’s Biomass Estimation using Machine Learning Models
Above ground biomass (AGB) is the key measurement for carbon credit. To quantify AGB over large forests, it is essential to develop a method that can handle the growing forest area. In this study, we investigate the possibility of estimating AGB using satellite data and machine-learning models. Several machine learning models, linear, non-linear, and ensemble methods, are evaluated. Random forest algorithm achieved the best model performance. On validation data, the random forest model can predict AGB with 24.5 Mg per area in terms of RMSE. The results demonstrate that satellite data from Sentinel-1, Sentinel-2, and MODIS have the potential to predict AGB in Thai dry-evergreen forests.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信