GSI:一种高效的人类步态识别时空模板

M. H. Ghaeminia, S. B. Shokouhi
{"title":"GSI:一种高效的人类步态识别时空模板","authors":"M. H. Ghaeminia, S. B. Shokouhi","doi":"10.1504/IJBM.2018.10011199","DOIUrl":null,"url":null,"abstract":"Human gait recognition is a challenging task in computer vision community. In order to represent the gait, the most common feature is a gait template. Many efficient templates have been developed recently, however, the effectiveness of the proposed motion models is still under investigation. A novel template feature, named gait salient image (GSI) is introduced in this paper. The main contribution of the proposed GSI is encoding the motion energy of gait into a single template. This idea is being conceptualised by applying appropriate spatio-temporal filter for extracting motion features and averaging it over a gait period. To show how GSI-based feature is being efficient, the proposed template is classified using PCA+LDA. Extensive experiments on popular gait databases reveal an improvement over the available methods in terms of efficiency and accuracy. The value of recognition rate is 58.44% for Rank1 and 76.60% for Rank5 based on the USF database.","PeriodicalId":262486,"journal":{"name":"Int. J. Biom.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"GSI: efficient spatio-temporal template for human gait recognition\",\"authors\":\"M. H. Ghaeminia, S. B. Shokouhi\",\"doi\":\"10.1504/IJBM.2018.10011199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human gait recognition is a challenging task in computer vision community. In order to represent the gait, the most common feature is a gait template. Many efficient templates have been developed recently, however, the effectiveness of the proposed motion models is still under investigation. A novel template feature, named gait salient image (GSI) is introduced in this paper. The main contribution of the proposed GSI is encoding the motion energy of gait into a single template. This idea is being conceptualised by applying appropriate spatio-temporal filter for extracting motion features and averaging it over a gait period. To show how GSI-based feature is being efficient, the proposed template is classified using PCA+LDA. Extensive experiments on popular gait databases reveal an improvement over the available methods in terms of efficiency and accuracy. The value of recognition rate is 58.44% for Rank1 and 76.60% for Rank5 based on the USF database.\",\"PeriodicalId\":262486,\"journal\":{\"name\":\"Int. J. Biom.\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Biom.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJBM.2018.10011199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Biom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBM.2018.10011199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

人体步态识别是计算机视觉领域的一项具有挑战性的任务。为了表示步态,最常见的特征是步态模板。近年来,人们开发了许多高效的模板,但所提出的运动模型的有效性仍在研究中。提出了一种新的模板特征——步态显著图像(GSI)。该方法的主要贡献在于将步态的运动能量编码到单个模板中。这个想法是通过应用适当的时空滤波器来提取运动特征并在步态周期内进行平均来概念化的。为了显示基于gsi的特征是如何高效的,所提出的模板使用PCA+LDA进行分类。在常用的步态数据库上进行的大量实验表明,该方法在效率和准确性方面都优于现有方法。基于USF数据库,Rank1和Rank5的识别率分别为58.44%和76.60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GSI: efficient spatio-temporal template for human gait recognition
Human gait recognition is a challenging task in computer vision community. In order to represent the gait, the most common feature is a gait template. Many efficient templates have been developed recently, however, the effectiveness of the proposed motion models is still under investigation. A novel template feature, named gait salient image (GSI) is introduced in this paper. The main contribution of the proposed GSI is encoding the motion energy of gait into a single template. This idea is being conceptualised by applying appropriate spatio-temporal filter for extracting motion features and averaging it over a gait period. To show how GSI-based feature is being efficient, the proposed template is classified using PCA+LDA. Extensive experiments on popular gait databases reveal an improvement over the available methods in terms of efficiency and accuracy. The value of recognition rate is 58.44% for Rank1 and 76.60% for Rank5 based on the USF database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信