使用局部七层模式的乳腺密度分类:多分辨率和多拓扑方法

Andrik Rampun, B. Scotney, P. Morrow, Haibo Wang
{"title":"使用局部七层模式的乳腺密度分类:多分辨率和多拓扑方法","authors":"Andrik Rampun, B. Scotney, P. Morrow, Haibo Wang","doi":"10.1109/CBMS.2019.00133","DOIUrl":null,"url":null,"abstract":"We present an extension of our previous work in [1] by investigating the use of Local Septenary Patterns (LSP) for breast density classification in mammograms. The LSP operator is a variant of Local Binary Patterns (LBP) inspired by Local Ternary Patterns (LTP) and Local Quinary patterns (LQP). The main extensions in our work are i) we investigate the use of a multi-resolution technique when extracting micro texture information, ii) we investigate different neighbourhood topologies as different ways of extracting texture features, and iii) we use an additional dataset called InBreast as well as the most popular dataset in the literature, which is the Mammographic Image Analysis Society (MIAS) to further evaluate the performance of the LSP operator.","PeriodicalId":311634,"journal":{"name":"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Breast Density Classification using Local Septenary Patterns: A Multi-resolution and Multi-topology Approach\",\"authors\":\"Andrik Rampun, B. Scotney, P. Morrow, Haibo Wang\",\"doi\":\"10.1109/CBMS.2019.00133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an extension of our previous work in [1] by investigating the use of Local Septenary Patterns (LSP) for breast density classification in mammograms. The LSP operator is a variant of Local Binary Patterns (LBP) inspired by Local Ternary Patterns (LTP) and Local Quinary patterns (LQP). The main extensions in our work are i) we investigate the use of a multi-resolution technique when extracting micro texture information, ii) we investigate different neighbourhood topologies as different ways of extracting texture features, and iii) we use an additional dataset called InBreast as well as the most popular dataset in the literature, which is the Mammographic Image Analysis Society (MIAS) to further evaluate the performance of the LSP operator.\",\"PeriodicalId\":311634,\"journal\":{\"name\":\"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2019.00133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2019.00133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们通过研究在乳房x线照片中使用局部七区模式(LSP)进行乳房密度分类,提出了我们在[1]中先前工作的扩展。LSP算子是受本地三元模式(LTP)和本地五元模式(LQP)启发的本地二元模式(LBP)的一种变体。我们工作的主要扩展是i)我们研究了在提取微纹理信息时使用多分辨率技术,ii)我们研究了不同的邻域拓扑作为提取纹理特征的不同方法,以及iii)我们使用了一个名为InBreast的额外数据集以及文献中最流行的数据集,即乳腺图像分析协会(MIAS),以进一步评估LSP算子的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Breast Density Classification using Local Septenary Patterns: A Multi-resolution and Multi-topology Approach
We present an extension of our previous work in [1] by investigating the use of Local Septenary Patterns (LSP) for breast density classification in mammograms. The LSP operator is a variant of Local Binary Patterns (LBP) inspired by Local Ternary Patterns (LTP) and Local Quinary patterns (LQP). The main extensions in our work are i) we investigate the use of a multi-resolution technique when extracting micro texture information, ii) we investigate different neighbourhood topologies as different ways of extracting texture features, and iii) we use an additional dataset called InBreast as well as the most popular dataset in the literature, which is the Mammographic Image Analysis Society (MIAS) to further evaluate the performance of the LSP operator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信