Vahid Behravan, Neil E. Glover, Rutger Farry, Patrick Chiang, M. Shoaib
{"title":"生物医学信号的速率自适应压缩感知与稀疏度方差","authors":"Vahid Behravan, Neil E. Glover, Rutger Farry, Patrick Chiang, M. Shoaib","doi":"10.1109/BSN.2015.7299419","DOIUrl":null,"url":null,"abstract":"Biomedical signals exhibit substantial variance in their sparsity, preventing conventional a-priori open-loop setting of the compressed sensing (CS) compression factor. In this work, we propose, analyze, and experimentally verify a rate-adaptive compressed-sensing system where the compression factor is modified automatically, based upon the sparsity of the input signal. Experimental results based on an embedded sensor platform exhibit a 16.2% improvement in power consumption for the proposed rate-adaptive CS versus traditional CS with a fixed compression factor. We also demonstrate the potential to improve this number to 24% through the use of an ultra low power processor in our embedded system.","PeriodicalId":447934,"journal":{"name":"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Rate-adaptive compressed-sensing and sparsity variance of biomedical signals\",\"authors\":\"Vahid Behravan, Neil E. Glover, Rutger Farry, Patrick Chiang, M. Shoaib\",\"doi\":\"10.1109/BSN.2015.7299419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biomedical signals exhibit substantial variance in their sparsity, preventing conventional a-priori open-loop setting of the compressed sensing (CS) compression factor. In this work, we propose, analyze, and experimentally verify a rate-adaptive compressed-sensing system where the compression factor is modified automatically, based upon the sparsity of the input signal. Experimental results based on an embedded sensor platform exhibit a 16.2% improvement in power consumption for the proposed rate-adaptive CS versus traditional CS with a fixed compression factor. We also demonstrate the potential to improve this number to 24% through the use of an ultra low power processor in our embedded system.\",\"PeriodicalId\":447934,\"journal\":{\"name\":\"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2015.7299419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2015.7299419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rate-adaptive compressed-sensing and sparsity variance of biomedical signals
Biomedical signals exhibit substantial variance in their sparsity, preventing conventional a-priori open-loop setting of the compressed sensing (CS) compression factor. In this work, we propose, analyze, and experimentally verify a rate-adaptive compressed-sensing system where the compression factor is modified automatically, based upon the sparsity of the input signal. Experimental results based on an embedded sensor platform exhibit a 16.2% improvement in power consumption for the proposed rate-adaptive CS versus traditional CS with a fixed compression factor. We also demonstrate the potential to improve this number to 24% through the use of an ultra low power processor in our embedded system.