具有跟踪连续性的多目标跟踪:一种高效的随机有限集跟踪算法

Thomas Kropfreiter, F. Hlawatsch
{"title":"具有跟踪连续性的多目标跟踪:一种高效的随机有限集跟踪算法","authors":"Thomas Kropfreiter, F. Hlawatsch","doi":"10.1109/SDF.2018.8547059","DOIUrl":null,"url":null,"abstract":"We propose a random finite set (RFS) based algorithm for tracking multiple objects while maintaining track continuity. In our approach, the object states are modeled by a combination of a labeled multi-Bernoulli (LMB) RFS and a Poisson RFS. Low complexity is achieved through several judiciously chosen approximations in the update step. In particular, the computationally less demanding Poisson part of our algorithm is used to track potential objects whose existence is highly uncertain. A new labeled Bernoulli component is generated only if there is sufficient evidence of object existence, and then the corresponding object state is tracked by the more accurate but more complex LMB part of the algorithm. Simulation results for a challenging scenario demonstrate an attractive accuracy-complexity tradeoff and a significant complexity reduction relative to other RFS-based algorithms with comparable performance.","PeriodicalId":357592,"journal":{"name":"2018 Sensor Data Fusion: Trends, Solutions, Applications (SDF)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multiobject Tracking with Track Continuity: An Efficient Random Finite Set Based Algorithm\",\"authors\":\"Thomas Kropfreiter, F. Hlawatsch\",\"doi\":\"10.1109/SDF.2018.8547059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a random finite set (RFS) based algorithm for tracking multiple objects while maintaining track continuity. In our approach, the object states are modeled by a combination of a labeled multi-Bernoulli (LMB) RFS and a Poisson RFS. Low complexity is achieved through several judiciously chosen approximations in the update step. In particular, the computationally less demanding Poisson part of our algorithm is used to track potential objects whose existence is highly uncertain. A new labeled Bernoulli component is generated only if there is sufficient evidence of object existence, and then the corresponding object state is tracked by the more accurate but more complex LMB part of the algorithm. Simulation results for a challenging scenario demonstrate an attractive accuracy-complexity tradeoff and a significant complexity reduction relative to other RFS-based algorithms with comparable performance.\",\"PeriodicalId\":357592,\"journal\":{\"name\":\"2018 Sensor Data Fusion: Trends, Solutions, Applications (SDF)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Sensor Data Fusion: Trends, Solutions, Applications (SDF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SDF.2018.8547059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Sensor Data Fusion: Trends, Solutions, Applications (SDF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDF.2018.8547059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于随机有限集(RFS)的多目标跟踪算法。在我们的方法中,对象状态是通过标记的多伯努利RFS和泊松RFS的组合来建模的。通过在更新步骤中明智地选择几个近似值来实现低复杂度。特别是,我们的算法的计算要求较低的泊松部分用于跟踪存在高度不确定的潜在对象。只有当有足够的证据证明物体存在时,才会生成一个新的标记伯努利分量,然后由算法中更精确但更复杂的LMB部分跟踪相应的物体状态。一个具有挑战性的场景的仿真结果表明,相对于其他具有相当性能的基于rfs的算法,该算法具有吸引力的精度-复杂性权衡和显著的复杂性降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiobject Tracking with Track Continuity: An Efficient Random Finite Set Based Algorithm
We propose a random finite set (RFS) based algorithm for tracking multiple objects while maintaining track continuity. In our approach, the object states are modeled by a combination of a labeled multi-Bernoulli (LMB) RFS and a Poisson RFS. Low complexity is achieved through several judiciously chosen approximations in the update step. In particular, the computationally less demanding Poisson part of our algorithm is used to track potential objects whose existence is highly uncertain. A new labeled Bernoulli component is generated only if there is sufficient evidence of object existence, and then the corresponding object state is tracked by the more accurate but more complex LMB part of the algorithm. Simulation results for a challenging scenario demonstrate an attractive accuracy-complexity tradeoff and a significant complexity reduction relative to other RFS-based algorithms with comparable performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信