太阳能路灯系统的可靠性和性能研究

A. A. Fashina, S. T. Azeko, J. Asare, C. Ani, V. Anye, E. R. Rwenyagila, B. Dandogbessi, O. Oladele, M. Dyeris
{"title":"太阳能路灯系统的可靠性和性能研究","authors":"A. A. Fashina, S. T. Azeko, J. Asare, C. Ani, V. Anye, E. R. Rwenyagila, B. Dandogbessi, O. Oladele, M. Dyeris","doi":"10.14419/IJSW.V5I2.8109","DOIUrl":null,"url":null,"abstract":"This paper presents the results of a study on the reliability and performance of the solar-powered street lighting systems installed at the African University of Science and Technology (AUST) in Nigeria, a hot and humid environment. The technical performance of the systems was studied using the following performance indicators: system energy yield, capture loss, as well as the system performance ratio while the reliability of the systems was examined using a model developed from the findings from the maintenance and fault diagnosis of the systems. The model was used to predict the total failure and survival probability of the systems using the Weibull distribution. The performance evaluation during the monitored period (February 2012 to January 2015) indicated that the performance ratios of the systems vary from 70% to 89% and the energy yields of the systems ranging from 2.87 h/day to 5.57 h/day. The results from the reliability analysis also showed that when the stress concentration factor around the notch between the cable terminals in the charge controller increases, the charge controller will become overheated, which in turn affected other components of the systems. The implications of this study are also discussed for the design and development of future solar-powered street lighting systems.","PeriodicalId":119953,"journal":{"name":"International Journal of Advances in Scientific Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A study on the reliability and performance of solar powered street lighting systems\",\"authors\":\"A. A. Fashina, S. T. Azeko, J. Asare, C. Ani, V. Anye, E. R. Rwenyagila, B. Dandogbessi, O. Oladele, M. Dyeris\",\"doi\":\"10.14419/IJSW.V5I2.8109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the results of a study on the reliability and performance of the solar-powered street lighting systems installed at the African University of Science and Technology (AUST) in Nigeria, a hot and humid environment. The technical performance of the systems was studied using the following performance indicators: system energy yield, capture loss, as well as the system performance ratio while the reliability of the systems was examined using a model developed from the findings from the maintenance and fault diagnosis of the systems. The model was used to predict the total failure and survival probability of the systems using the Weibull distribution. The performance evaluation during the monitored period (February 2012 to January 2015) indicated that the performance ratios of the systems vary from 70% to 89% and the energy yields of the systems ranging from 2.87 h/day to 5.57 h/day. The results from the reliability analysis also showed that when the stress concentration factor around the notch between the cable terminals in the charge controller increases, the charge controller will become overheated, which in turn affected other components of the systems. The implications of this study are also discussed for the design and development of future solar-powered street lighting systems.\",\"PeriodicalId\":119953,\"journal\":{\"name\":\"International Journal of Advances in Scientific Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advances in Scientific Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14419/IJSW.V5I2.8109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Scientific Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14419/IJSW.V5I2.8109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文介绍了在炎热潮湿的尼日利亚非洲科技大学(AUST)安装的太阳能街道照明系统的可靠性和性能研究结果。系统的技术性能使用以下性能指标进行研究:系统能量产出、捕获损失以及系统性能比,而系统的可靠性则使用从系统维护和故障诊断的发现中开发的模型进行检查。该模型采用威布尔分布预测系统的总失效概率和生存概率。监测期间(2012年2月至2015年1月)的性能评价表明,系统的性能比率为70% ~ 89%,发电量为2.87 h/d ~ 5.57 h/d。可靠性分析结果还表明,当充电控制器电缆端子间缺口周围的应力集中系数增大时,充电控制器会过热,进而影响系统的其他部件。本研究对未来太阳能街道照明系统的设计和发展也有启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study on the reliability and performance of solar powered street lighting systems
This paper presents the results of a study on the reliability and performance of the solar-powered street lighting systems installed at the African University of Science and Technology (AUST) in Nigeria, a hot and humid environment. The technical performance of the systems was studied using the following performance indicators: system energy yield, capture loss, as well as the system performance ratio while the reliability of the systems was examined using a model developed from the findings from the maintenance and fault diagnosis of the systems. The model was used to predict the total failure and survival probability of the systems using the Weibull distribution. The performance evaluation during the monitored period (February 2012 to January 2015) indicated that the performance ratios of the systems vary from 70% to 89% and the energy yields of the systems ranging from 2.87 h/day to 5.57 h/day. The results from the reliability analysis also showed that when the stress concentration factor around the notch between the cable terminals in the charge controller increases, the charge controller will become overheated, which in turn affected other components of the systems. The implications of this study are also discussed for the design and development of future solar-powered street lighting systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信