基于集成学习的会计舞弊预测模型

Yunchuan Sun, Zixiu Ma, Xiaoping Zeng, Yao Guo
{"title":"基于集成学习的会计舞弊预测模型","authors":"Yunchuan Sun, Zixiu Ma, Xiaoping Zeng, Yao Guo","doi":"10.1109/INDIN45523.2021.9557545","DOIUrl":null,"url":null,"abstract":"Accounting fraud, usually difficult to detect, can cause significant harm to stakeholders and serious damage to the market. Effective methods of accounting fraud detection are needed for the prevention and governance of accounting fraud.In this study, we develop a novel accounting fraud prediction model using XGBoost, a powerful ensemble learning approach. We respectively select 12 financial ratios, 28 raw accounting numbers and 99 raw accounting numbers available from Chinese listed firms’ financial statements, as the model input. To assess the performance of fraud prediction models, we select two evaluation metrics - AUC and NDCG@k, and two benchmark models - the Dechow et al. (2011) logistic regression model based on financial ratios, and the Bao et al. (2020) AdaBoost model based on raw accounting numbers.Results show that: 1) our XGBoost-based prediction model outperforms two benchmark models by a large margin whatever model inputs and evaluation metrics; 2) the XGBoost-based prediction model with raw accounting numbers input outperforms the one with financial ratios input; 3) the XGoost-based prediction model with 99 raw accounting numbers input outperforms the one with 28 raw accounting numbers input.","PeriodicalId":370921,"journal":{"name":"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)","volume":"27 20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Predicting Model For Accounting Fraud Based On Ensemble Learning\",\"authors\":\"Yunchuan Sun, Zixiu Ma, Xiaoping Zeng, Yao Guo\",\"doi\":\"10.1109/INDIN45523.2021.9557545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accounting fraud, usually difficult to detect, can cause significant harm to stakeholders and serious damage to the market. Effective methods of accounting fraud detection are needed for the prevention and governance of accounting fraud.In this study, we develop a novel accounting fraud prediction model using XGBoost, a powerful ensemble learning approach. We respectively select 12 financial ratios, 28 raw accounting numbers and 99 raw accounting numbers available from Chinese listed firms’ financial statements, as the model input. To assess the performance of fraud prediction models, we select two evaluation metrics - AUC and NDCG@k, and two benchmark models - the Dechow et al. (2011) logistic regression model based on financial ratios, and the Bao et al. (2020) AdaBoost model based on raw accounting numbers.Results show that: 1) our XGBoost-based prediction model outperforms two benchmark models by a large margin whatever model inputs and evaluation metrics; 2) the XGBoost-based prediction model with raw accounting numbers input outperforms the one with financial ratios input; 3) the XGoost-based prediction model with 99 raw accounting numbers input outperforms the one with 28 raw accounting numbers input.\",\"PeriodicalId\":370921,\"journal\":{\"name\":\"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)\",\"volume\":\"27 20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN45523.2021.9557545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN45523.2021.9557545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

会计舞弊通常难以发现,会对利益相关者造成重大损害,对市场造成严重损害。预防和治理会计舞弊需要有效的会计舞弊检测方法。在本研究中,我们使用强大的集成学习方法XGBoost开发了一种新的会计欺诈预测模型。我们分别从中国上市公司的财务报表中选取12个财务比率、28个原始会计编号和99个原始会计编号作为模型输入。为了评估欺诈预测模型的性能,我们选择了两个评估指标——AUC和NDCG@k,以及两个基准模型——Dechow等人(2011年)基于财务比率的逻辑回归模型,以及Bao等人(2020年)基于原始会计数字的AdaBoost模型。结果表明:1)无论模型输入和评估指标如何,基于xgboost的预测模型都比两种基准模型表现更好;2)以原始会计数字输入的基于xgboost的预测模型优于财务比率输入的预测模型;3)输入99个原始会计号的基于xgood的预测模型优于输入28个原始会计号的预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Predicting Model For Accounting Fraud Based On Ensemble Learning
Accounting fraud, usually difficult to detect, can cause significant harm to stakeholders and serious damage to the market. Effective methods of accounting fraud detection are needed for the prevention and governance of accounting fraud.In this study, we develop a novel accounting fraud prediction model using XGBoost, a powerful ensemble learning approach. We respectively select 12 financial ratios, 28 raw accounting numbers and 99 raw accounting numbers available from Chinese listed firms’ financial statements, as the model input. To assess the performance of fraud prediction models, we select two evaluation metrics - AUC and NDCG@k, and two benchmark models - the Dechow et al. (2011) logistic regression model based on financial ratios, and the Bao et al. (2020) AdaBoost model based on raw accounting numbers.Results show that: 1) our XGBoost-based prediction model outperforms two benchmark models by a large margin whatever model inputs and evaluation metrics; 2) the XGBoost-based prediction model with raw accounting numbers input outperforms the one with financial ratios input; 3) the XGoost-based prediction model with 99 raw accounting numbers input outperforms the one with 28 raw accounting numbers input.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信