均匀分布下非线性FIR模型的学习

K. Najarian, G. Dumont, M. Davies, N. Heckman
{"title":"均匀分布下非线性FIR模型的学习","authors":"K. Najarian, G. Dumont, M. Davies, N. Heckman","doi":"10.1109/ACC.1999.783163","DOIUrl":null,"url":null,"abstract":"The PAC learning theory creates a framework to assess the learning properties of a modeling procedure. This paper presents a bound on the size of the training data set required to train a nonlinear FIR model, where the input data are assumed to be generated according to the uniform distribution. The bound is further specified for a family of feedforward neural networks, which utilizes a sigmoid activation function. The learning properties of a neural identification task have been assessed using the aforesaid family of neural networks. Also, using the structural risk minimization algorithm, a learning procedure for the modeling tasks in which the exact number of the hidden neurons is unknown, is introduced.","PeriodicalId":441363,"journal":{"name":"Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Learning of nonlinear FIR models under uniform distribution\",\"authors\":\"K. Najarian, G. Dumont, M. Davies, N. Heckman\",\"doi\":\"10.1109/ACC.1999.783163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The PAC learning theory creates a framework to assess the learning properties of a modeling procedure. This paper presents a bound on the size of the training data set required to train a nonlinear FIR model, where the input data are assumed to be generated according to the uniform distribution. The bound is further specified for a family of feedforward neural networks, which utilizes a sigmoid activation function. The learning properties of a neural identification task have been assessed using the aforesaid family of neural networks. Also, using the structural risk minimization algorithm, a learning procedure for the modeling tasks in which the exact number of the hidden neurons is unknown, is introduced.\",\"PeriodicalId\":441363,\"journal\":{\"name\":\"Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.1999.783163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.1999.783163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

PAC学习理论创建了一个框架来评估建模过程的学习特性。本文给出了训练非线性FIR模型所需的训练数据集大小的一个边界,其中输入数据假定是根据均匀分布生成的。对于一类利用s型激活函数的前馈神经网络,进一步确定了其界。神经识别任务的学习特性已经使用上述神经网络家族进行了评估。此外,利用结构风险最小化算法,介绍了一种用于未知隐藏神经元确切数量的建模任务的学习过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning of nonlinear FIR models under uniform distribution
The PAC learning theory creates a framework to assess the learning properties of a modeling procedure. This paper presents a bound on the size of the training data set required to train a nonlinear FIR model, where the input data are assumed to be generated according to the uniform distribution. The bound is further specified for a family of feedforward neural networks, which utilizes a sigmoid activation function. The learning properties of a neural identification task have been assessed using the aforesaid family of neural networks. Also, using the structural risk minimization algorithm, a learning procedure for the modeling tasks in which the exact number of the hidden neurons is unknown, is introduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信